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Metacomposites with negative electromagnetic parameters can be promising substitute for periodic
metamaterials. In this paper, we devoted to fabricating flexible metacomposite films, which have great
potential applications in the field of wearable cloaks, sensing, perfect absorption and stretchable elec-
tronic devices. The conductivity and the complex permittivity were investigated in flexible poly-
dimethylsiloxane (PDMS)/multi-walled carbon nanotubes (MWCNTs) membranous nanocomposites,
which were fabricated via in-situ polymerization process. With the increase of conductive one-
dimension carbon nanotubes concentration, there was a percolation transition observed in conduction
due to the formation of continuous networks. The dielectric dispersion behavior was also analyzed in the
spectra of complex permittivity. It is indicated that the conduction and polarization make a combined
effect on the dielectric loss in flexible PDMS/MWCNTs composites. The negative permittivity with a
dielectric resonance was obtained, and was attributed to the induced electric dipoles.

© 2017 Published by Elsevier Ltd.
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1. Introduction

Metamaterials, termed as left-handed materials or double
negative materials, are composed of artificially periodic unit cells
and have drawn increasing attention owing to their exotic prop-
erties, such as negative refraction index [ 1], reversed Doppler effect
[2] and reversed Vavilov-Cherenkov effect [3], which have prom-
ising applications in the field of invisible cloak [4], perfect lens [5],
wireless power transfer [6] and magnetic resonance imaging [7],
etc. Actually, due largely to the huge dissipation, complicated
manufacture and narrow bandwidth [8], the development and
applications of metamaterials with periodic building blocks were
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limited. Additionally, the negative electromagnetic parameters
including permittivity and permeability are mainly controlled by
their unit structures rather than their composition and micro-
structures of materials [9]. Therefore, as an alternative for periodic
metamaterials, it is significant to construct random materials with
negative electromagnetic parameters, which are called meta-
composites [10] and have an isotropic electromagnetic response
[11].

Compared with metamaterials, the tunable negative permit-
tivity and/or negative permeability in metacomposites are domi-
nated by tailoring their compositions and microstructures [12],
which opens a novel approach to design metamaterials. It is
demonstrated that negative permittivity behavior can be obtained
resulting from the dielectric resonance of the polarization [13] or
the plasma oscillation of the delocalized electrons in metallic
clusters [11]. Nevertheless, the negative permittivity derived from
metallic materials is usually enormous due to the ultrahigh electron
concentration [14], which brings about impedance mismatch and
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restricts their practical applications [15]. It is indicated that carbon
materials can be a preferable substitute to achieve weak negative
permittivity in bulk materials due to their moderate carrier con-
centration [ 16—19]. Furthermore, Shetty et al. [20] realized negative
permittivity in bulk composites with carbon coated iron nano-
particle. Compared with bulk metacomposites, the membranous
materials have greatly potential applications in the field of wear-
able cloaks [21], sensing [22], perfect absorption [23] and stretch-
able electronic devices [24], etc. In addition, there are few
investigations with regards to flexible metacomposites with
negative permittivity especially membranous materials. Therefore,
in this paper, we devoted to fabricating flexible metacomposite
films.

It is suggested that multi-walled carbon nanotubes (MWCNTSs)
have great potential applications in flexible electronics due to their
high intrinsic carrier mobility, conductivity and mechanical flexi-
bility [25,26]. Moreover, the commonly used substrates for flexible
electronics are polydimethylsiloxane (PDMS) [27], polyimide (PI)
[28] and polyethylene terephthalate (PET) [29] because of their
suitable intrinsic properties such as lower permittivity and lower
loss. However, PI has lower elastic regime due to its high Young's
modulus, which reduces the tunability of metamaterials during
mechanical deformations [30]. Meanwhile, a relatively high cross-
link temperature (~400 °C) of PI may result in complications with
functional fillers [31]. On the other hand, PET is susceptible to shear
heat and has high cost, which is detrimental to its practical appli-
cations [30]. Compared with other materials [32—34], PDMS pos-
sesses outstanding elasticity, good mechanical property, excellent
transparency and reliable nontoxicity [35,36], thereby it has
become a promising candidate to make flexible, wearable and
tunable devices [37].

In this paper, flexible and stretchable PDMS was used as matrix
and multi-walled carbon nanotubes were selected as functional
fillers to fabricate PDMS/MWCNTs nanocomposite films by in-situ
polymerization method. The conductivity and the complex
permittivity of the composites were investigated in the radio fre-
quency region. With the increase of functional fillers, the electrical
percolation phenomenon was observed in PDMS/MWCNTs mem-
branous composites. The electrical conduction mechanism was
further clarified. Moreover, the dielectric dispersion behavior of the
complex permittivity was explored. Meanwhile, negative permit-
tivity was achieved along with a dielectric resonance, where the
permittivity switched from positive to negative. The mechanism to
cause the negative permittivity was disclosed as well.

2. Experimental
2.1. Preparation process

The polydimethylsiloxane (PDMS)/multi-walled carbon nano-
tubes (MWCNTs) films were fabricated by in-situ polymerization
process, the detailed schematic were shown in Fig. 1. The silicone
elastomer base (Sylgard 184 A, Dow Corning Company) and curing
agent (Sylgard 184B, Dow Corning Company) were mixed in the
beaker with a 10:1 weight ratio, adding n-heptane (at the same
weight of base) as the solvent. Subsequently, the mixture added
with different mass fractions of MWCNTs without any treatment (0O,
0.5, 2.5, 3.5, 5.0 wt%, which were denoted as samples PC-pure, PC-
0.5, PC-2.5, PC-3.5 and PC-5.0). Furthermore, the MWCNTs were
dispersed in the mixed solution by ultrasonic treatment at room
temperature to reduce the agglomeration of MWCNTSs; then the
mixture was mechanically stirred at 600 rpm for 30 min.

After MWCNTs were uniformly dispersed into the matrix, the
mixed slurry was coated on the smooth and clean glass substrate at
a constant speed using the film applicator (Elcometer 3530); the

thickness of the applicator was adjusted to 250 pm. Afterwards, the
film with the glass substrate was put into the oven and dried at
353 K for 2 h. After polymerization process, the PDMS/MWCNTSs
film adhered to the glass substrate was took out from the oven.
Subsequently, the coating and curing processes were repeated for
additional five times with the film applicator. After totally cured,
the film was peeled off from the substrate carefully. The PDMS film
with uniformly dispersed MWCNTs was finally prepared by in situ
polymerization.

2.2. Characterization and measurement

The phase composition of the film was analyzed by X-ray
diffraction, a PANalytical X'Pert MPD PRO diffractometer equipped
with a Si-based position-sensitive one-dimensional detector and
Ni-filtered Cu Ka radiation source. The surface morphology and
microstructure of the composite film were observed using SU-70
field emission scanning electron microscope (FESEM; Tokyo,
Japan). The Fourier transform infrared (FT-IR) spectra of the pure
PDMS and the composite film were obtained in the range of
500—4000 cm~! at a resolution of 4 cm~! using FT-IR spectroscopy
(Bruker Inc. Vector 22, coupled with an attenuated total reflection
(ATR) accessory).

The dc electrical conductivity for weakly conductive samples
was tested by high resistance meter (Agilent 4339B, USA). For the
samples with better conductive behavior, the dc electrical con-
ductivity was measured by a four probe method. V-source testing
mode (Keithley 2400 source meter, USA) was employed to make
sure that a precise voltage was applied on the two inner probes. The
measured voltage was adjusted in the range from —1 to 1V, and the
corresponding current was measured and recorded across the two
outer probes [19].

The complex permittivity spectra were carried out at room
temperature using an impedance analyzer equipped with 16453 A
dielectric test fixture (Agilent E4991A, USA) in the frequency range
from 10 MHz to 1 GHz. The films were tailored into wafers with a
dimension of 25 mm in diameter for measurement. The silver paste
was painted between samples and electrodes to eliminate the
contact resistance. After calibration and compensation for the
analyzer, the samples were placed between the two electrodes for
measurement, at the action of a 100 mV ac voltage. The complex
impedance (Z = Z '+iZ ") data were converted into capacitance C
and resistance R for the complex permittivity (¢ = &'+ie";) calcu-
lation, following equations (1) and (2),

, cd

&= Aeg (1)
« d

& = Snfheq (2)

where Z' and Z” are the real and imaginary impedance, ¢'; and &“;
are the real and imaginary permittivity, C is capacitance, R is the
resistance, d is the thickness of sample, f is the test frequency, A is
the area of the electrode, and ¢ is the permittivity of vacuum
(8.85 x 10~2 F/m).

3. Results and discussion

Fig. 2 shows the FT-IR spectra of the pure PDMS and composite
films with different MWCNTSs loadings. For pure PDMS sample, the
observed doublet peaks at 1100 cm ™! and 1020 cm ™! corresponded
to the asymmetric and symmetric stretching vibration of two
neighbor siloxane bonds [38]. Moreover, two obvious absorptions



52 K. Sun et al. / Polymer 125 (2017) 50—57

n-Heptane
" iy
Precursor &
Curing Agent 14 ?’

hd

Magnetic
Stirrer

(1) Mixing

PDMS/MWCNTs
Membr:
embrane Glass

Substrate

(4) Stripping

at 1259 and 800 cm~! were related to the in-plane bending or
scissoring and out-plane oscillations of the Si—CHs; bonding,
respectively [39]. Meanwhile, the methyl was observed at
2960 cm™ !, which means the asymmetric stretching vibration. Af-
ter adding the MWCNTS fillers, the spectra of PDMS/MWCNTSs films
were in good accordance with that of pure film, indicating that
there was no reaction between the two components. In addition,
the molecular formula and 3D mode of PDMS molecule are shown
in Fig. 2(b)-2(c), respectively.

The XRD patterns and SEM images of pure multi-walled carbon
nanotubes and PDMS/MWCNTs composites are presented in Fig. 3.
It was shown that there were two diffraction peaks observed at
nearly 26° and 44° for pure MWCNTs(shown in Fig. 3(b)), which
corresponded to (002) and (100) crystal faces, indicating the
interlayer space in the radial direction and the in-plane graphitic
structure of MWCNTSs, respectively [40]. The XRD pattern of pure
PDMS exhibited the amorphous structure with a distinct peak at
around 12°, corresponding to the diffraction of the minicrystal of
PDMS [41]. After adding the MWCNTs into the PDMS, the high in-
tensity of PDMS masked the characteristic peaks of MWCNTSs,
which was hard to be recognized. With the increase of MWCNTSs
fraction, the diffraction peak of MWCNTs was gradually enhanced
and the characteristic peaks did not shift (shown in Fig. 3(a)), also
suggesting no chemical reaction during the curing process; that is
to say, the PDMS/MWCNTs composites were successfully prepared
by the in situ polymerization method. When the MWCNTs loading
level was lower (shown in Fig. 3 (c)-3(d)), the fillers were randomly
distributed in the matrix. Additionally, the MWCNTSs were enclosed
by the matrix, so carbon nanotubes were hard to be observed. With
the increase of the MWCNTs content, the carbon nanotubes
aggregated together and established a continuous network (in
Fig. 3(e)-3(f)). The conduction behavior of a material is known to be
very sensitive to its composition and microstructure [42]. Hence,
the conduction behaviors of PDMS/MWCNTs composites are

(3) Curing

Fig. 1. The schematic of PDMS/MWCNTs membranous composites via in-situ polymerization process.

further investigated in the following section.

The dc conductivity of PDMS/MWCNTs films with the increase of
filler fractions is shown in Fig. 4. For the pure PDMS film, the
conductivity was as low as 519 x 10~ Q, presenting insulating
property. After adding low content of MWCNTs fillers (0.5 wt%) into
the matrix, the conductivity of the PDMS/MWCNTs film increased
by less than one order of magnitude and it still possessed a weak
conductivity. After the weight fraction of MWCNTs reached 2.5 wt%,
the conductivity of the resultant film dramatically increased by
almost eight orders of magnitude, indicating that there was an
electrical percolation transition. Further increasing the conductive
MWCNTs content, the conductivity got enhanced.

With the increase of conductive fillers content, the micro-
structure, distribution and topology of MWCNTs will generate
obvious change [43]. As shown in the insets of Fig. 4, at low carbon
nanotubes loading level, the one-dimensional fillers were
randomly distributed in the matrix with a weak interconnection
each other. When the concentration of functional fillers approached
a threshold value f;, the MWCNTs came into contact and formed a
continuous percolating path throughout the insulating PDMS ma-
trix [44]. Along with the change of microstructure, the conductivity
of the composites also underwent an abrupt shift and the perco-
lation behavior took place. The dependence of conductivity on filler
content was corresponded to power law, which is described as
equation (3) [45],

oo |f —fe[* 3)

where ¢ is the conductivity of composites, f. is the percolation
threshold, f is the volume content of conductive fillers and e is a
critical exponential parameter.

Generally, the distribution of fillers in a matrix plays an
important role in determining the percolation threshold, which is
attributed to the geometric parameters, such as particle size, shape,
and orientation [43,45]. For the one-dimensional fillers with large
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Fig. 2. The FT-IR spectra (a) of the pure PDMS and PDMS/MWCNTs film. (b) and (c) are
the molecular formula and 3D mode of PDMS molecule, respectively.

aspect ratio, such as rods [46], tubes [47] or fibers [48], the
percolation threshold was reduced significantly owing to the easier
formation of conductive networks. Actually, the percolation
threshold of PDMS/CNTs film was not located at a very low level due
largely to the high polarity, high surface tension and a lower degree
of crystallization of polymer matrix [49,50], which inhibited the
uniform distribution of MWCNTs fillers in the matrix and resulted
in a relatively high percolation threshold.

When the MWCNTs content was below the percolation
threshold, the isolated fillers were randomly distributed in the
PDMS matrix without forming percolation networks. Hence, the
electrons just moved by discontinuous hopping along adjacent
MWCNTs, following a hopping conduction mechanism [51]. After
the concentration of MWCNTs fillers approaches a percolated state,
the percolation network was established throughout the system
and the electrons can move along the conductive networks,
following a metal-like conduction behavior in the percolative
composites [52,53].

The frequency dispersions of the complex permittivity and the
dielectric loss for PDMS/MWCNTSs composite are shown in Fig. 5.
For the pristine PDMS, the dielectric constant was very low and the
permittivity spectrum was nearly independent of frequency. When
alow MWCNTs: fillers loading (for example 0.5 wt%) was added, the

real permittivity of the composite film got slightly enhanced.
Further increasing the functional filler content, the dielectric con-
stant of resultant film was markedly improved (shown in Fig. 5(a)),
which was attributed to the Maxwell-Wagner-Sillars effect [44]. As
is well known, when the conductive fillers were distributed in the
matrix, the charges were mainly accumulated at the interfaces
between MWCNTs particles and PDMS matrix, which established
numerous microcapacitors and contributed to the enhancement of
dielectric constant [54]. When the MWCNTSs content reached up to
5 wt%, the real permittivity spectra exhibited obviously frequency
dispersion behavior; namely, the dielectric constant decreased with
the increase of frequency. Interestingly, the negative permittivity
with a relatively small value was observed starting with 933 MHz
(shown in Fig. 5(b)). In our previous investigations [55,56], the
negative permittivity was achieved in metal/ceramic composites
due to the plasma oscillation of the delocalized electrons in metallic
clusters, which can be explained by Drude model [12]. Moreover,
the plasma-like negative permittivity was obtained in polyimide/
carbon nanotube composites [57], which was ascribed to the
metallic-like nature of MWCNTSs. In this PDMS/MWCNTSs composite
film, the real permittivity switched from positive to negative values
with a dielectric resonance, which can be described by the Lorentz
model as shown by equations (4) and (5) [58,59]:

wZ
e=1 Jr# (4)
wh — w? +ivw;
nee?
Wp = = (5)
mego

where ¢ is the complex permittivity, w; is collision frequency (the
inverse relaxation time 1/7), w is the angular frequency of external
electric field, wg is the characteristic frequency, wp is plasma fre-
quency, 1 is the effective concentration of conductive electrons, me
is the effective mass of electron and eg is the permittivity of
vacuum.

When the frequency of external electric field f and the intrinsic
frequency of materials fo possess the same or similar frequency, the
dielectric resonance took place and the negative permittivity
appeared [59]. It is worth noting that the resonance characteristic
was not very distinct, which was attributed to the huge damping
coefficient. In addition, similar negative permittivity behavior was
observed in the MWCNTSs/polypropylene composites [19] and Ag/
Al,03 composites [60]. It was also suggested that the interband
transition can be responsible for the positive-negative permittivity
transition [19]. In our future research, more attention should be
paid to the membranous composites with more functional filler
content and tunable negative permittivity behavior.

For heterogeneous composites with conductive fillers, the
dissipation factor &“; depends on the conductive carriers and
polarizing dipoles especially in the vicinity of percolation threshold
[61]. Hence, the dielectric loss ¢ from the combined contributions
of conduction and polarization can be expressed as equation (6)
[44],

[ n E€s — Ex
weg 14 w272

8; = .92 + e;, = (6)
where  is angular frequency, ¢ is dc conductivity, 7 is relaxation
time, ey, & and e« is the vacuum, static and high-frequency
dielectric constant, respectively. ec.“and ep“represent the dissipa-
tion in the form of conductivity and polarization, respectively.

In the composites with low MWCNTs loadings, the imaginary
permittivity presented weak dielectric loss in the test frequency
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The inset in (b) shows the XRD pattern of pure MWCNTs.
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Fig. 4. The dependence of dc conductivity on filler fraction in PDMS/MWCNTs films.
The insets present the different distributions of MWCNTs in PDMS films, and the two
forms of electrons conduction, respectively.

region, indicating that the frequency response from the insulating
matrix became dominant for the composites with a low carbon
nanotubes loading level [62]. When the conductive MWCNTs

fraction was above 2.5 wt%, there exists some leakage current
produced resulting from the agglomerated one-dimension
MWCNTS fillers. In this case, the PDMS/MWCNTSs composites pre-
sent metal-like behavior and possess lower breakdown strength,
which have potential applications in microwave absorbing, elec-
tromagnetic attenuation and shielding fields. As shown in Fig. 5(c),
the dielectric loss ¢” and frequency f conformed to linear relation,
ie., ¢, o 1/f, indicating that the conductive carriers played a primary
role in dielectric loss for the composites with high carbon nano-
tubes contents [63]. For the composites with 5 wt% MWCNTs fillers,
the imaginary permittivity spectrum showed an apparent differ-
ence from others. As shown in Fig. 5(d), there was a linear relation
between ¢“; and frequency f, which demonstrated that conduction
played an overwhelming role in the dielectric dissipation. With the
increase of frequency, the energy loss was gradually dominated by
polarizing dipoles rather than the conduction electrons, so the
permittivity exhibited the relaxation characteristic [44]. Similar
phenomena were also observed in the Ni/epoxy composites [61]
and MWCNTs/Al,03 composites [59].

Fig. 5(e)-5(f) shows the dielectric loss tangent (tand = &“/¢';) of
the PDMS/MWCNTs composites. When the MWCNTSs content was
below 5 wt%, although there existed a leakage current derived from
the partial CNTs networks, the tané was not too large to hamper the
impedance match, compared with that of previous study [63,64].
For the resultant composites with negative permittivity (shown in
Fig. 5(f)), the dielectric loss peak was achieved at the resonance
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Fig. 5. The dielectric dispersion of the complex permittivity for PDMS/MWCNTs composite films. (a) and (b) the real permittivity spectra; (c) and (d) the imaginary permittivity
spactra; (e) and (f) the dielectric loss tangent. The inset in (b) shows that the PDMS/MWCNTs membranous metacomposite with 5 wt% MWCNTs fillers is wrapped around the glass
bottle. The inset in (f) shows the flexibility of PDMS/MWCNTs membranous metacomposite.

frequency, where the real permittivity changed from positive to
negative values. Additionally, seen from the insets in Fig. 5(b) and
(f), the PDMS/MWCNTs membranous metacomposites were
wrapped around the surface of glass bottle and presented excellent
flexibility, which can be promising candidate for wearable cloaks
[21] and flexible devices [24]. It is significant to improve the
dielectric property taking advantage of functional MWCNTs [65].
Moreover, it could be an alternative to search for flexible membrane
with other functional fillers [66—68].

4. Conclusions

Flexible PDMS/MWCNTs membranous nanocomposites were
fabricated via in-situ polymerization process; the conductivity and
the complex permittivity were further investigated. When the
conductive MWCNTs fillers reached percolated state, there was an
electrical percolation phenomenon attained owing to the formed
conductive networks. It was demonstrated that the conductive
mechanism changed from hopping conduction to metal-like con-
duction in the vicinity of percolation threshold. Furthermore, the
dielectric dispersion behavior of the PDMS/MWCNTs composites

was investigated based on the spectra of complex permittivity. It
was revealed that the dielectric loss was dominated by conduction
and polarization in the heterogeneous composites with conductive
fillers. The negative permittivity was obtained at the resonance
frequency, which was attributed to the induced electric dipoles. It
was indicated that the interband transition was responsible for the
positive-negative permittivity transition. Hopefully, the flexible
PDMS/MWCNTs metacomposite films have significant applications,
especially in the field of wearable cloaks, sensing, perfect absorp-
tion and stretchable electronic devices.
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