Zirconium dioxide (ZrO₂) doped titanium dioxide (TiO₂) spinous hollow microspheres were successfully prepared through a facile solvothermal method using sunflower pollen as bio-templates. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), N₂ adsorption–desorption isotherms and UV–Vis diffuse reflectance spectroscopy. It was found that the products have spinous microsphere morphology with an approximate diameter of 12 μm. The ZrO₂ doped TiO₂ hollow microspheres exhibited a higher photocatalytic activity in the degradation of Rhodamine B (RhB) in aqueous solutions under UV-light irradiation compared with TiO₂ hollow microspheres and ZrO₂-doped TiO₂ particles. In particular, the removal of RhB followed pseudo-first-order kinetics, and 96.3% of RhB was degraded in 60 min under UV-light irradiation when ZrO₂ doped TiO₂ spinous hollow microspheres were used as the photocatalysts. Neutral and alkaline conditions were found to favor over acidic conditions for the photocatalytic degradation of RhB. Furthermore, scavenging experiments indicated that photogenerated holes (h⁺) and radicals (•OH and •O₂⁻) were the main reactive species in the photocatalytic process using ZrO₂ doped TiO₂ hollow microspheres as the catalysts under UV light irradiation.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

With the increasingly widespread application of organic dyes in industries, printing and dyeing wastewater containing a high content of dye pollutants poses a serious threat to the environment [1]. Many treatment methods, such as biodegradation, adsorption, ozonolysis, and photocatalysis, have been used to alleviate the environmental burden caused by dye pollutants [2–8]. In particular, the photocatalytic method has attracted much attention because it is economical, efficient, and environmentally friendly [9]. Titanium dioxide (TiO₂) has been widely used as photocatalysts owing to its excellent chemical stability, non-toxicity, low-cost, and reusability [10,11]. However, both low specific surface area and easy recombination of the electron–hole (e-h) pairs of the traditional TiO₂ photocatalyst have hindered its wide applications [12]. Therefore, the development of reliable and high efficient photocatalysts that overcome these limitations is of great importance [13].

Synthesis of photocatalysts with distinctive structures is a promising way to achieve high photocatalytic activity owing to the unique morphology and high specific surface area [14]. Many structures, including hollow microsphere, hollow cube, nanotube, and nanosheet, have been reported [15–24]. Especially, TiO₂ photocatalysts with hollow structures have received great attention in recent studies. For example, He et al. synthesized mesoporous TiO₂ hollow microspheres with an excellent photocatalytic activity by using natural rape pollen as a bio-template [10]. Zhang et al. prepared hollow TiO₂ cubes with a high specific surface area up to 132 m²/g using a hydrothermal procedure, and the catalysts showed superior performance for dye degradation in water [25]. To address the recombination of photoinduced electron–hole pairs in the photocatalytic reactions, doping with other semiconductor materials or sensitizing with certain chemical substances are the most feasible approaches to enhance the separation of electron–hole pairs [26–29]. For example, Han et al. prepared TiO₂ nanotube arrays sensitized by 5, 10, 15, 20-tetrakis (4-chlorophenyl) porphyrin (H₄TCIPP-TNTs) via a facile surface adsorption method, and the as-prepared H₄TCIPP-TNTs photoelectrode exhibited excellent photoelectrochemical performance and photocatalytic properties [30]. Recent studies also indicate that TiO₂ materials doped with metal oxides such as SiO₂–TiO₂, ZrO₂–TiO₂, WO₃–TiO₂, and Al₂O₃–TiO₂ possessed enhanced photocatalytic properties than pure TiO₂ [31–34].

Zirconium dioxide (ZrO₂), as a typical n-type semiconductor, has a wide band gap (ca. 5.0 eV) and other unique characteristics, such as weak acidity which results in slightly acidic surface of the materials doped with ZrO₂ [13]. The acidity coming from the surface hydroxyl groups can capture light-induced holes and suppress the recombination process of electron–hole pairs thus increasing the quantum yield [35]. Furthermore, the addition of appropriate amounts of ZrO₂ can decrease the crystallite size of TiO₂ due to the dissimilar nuclei and coordination geometry [36]. Consequently, the fabrication of ZrO₂–TiO₂ composite materials with special structures has attracted extensive attention. For example, Liu et al. synthesized mesoporous ZrO₂–TiO₂ composite nanoparticles through solvothermal method and demonstrated higher photocatalytic activity compared with that of the commercial P25 [29]. Li et al. prepared macro–mesoporous ZrO₂–TiO₂ composite materials by a facile surfactant self-assembly method and the photocatalytic activities of the novel composites were remarkably higher than that of the corresponding pure TiO₂ and ZrO₂ materials in the decomposition of Rhodamine B (RhB) under UV light radiation [37].

In recent years, template methods have been increasingly used to prepare products with special morphology [38–44]. Among various templates that have been used, biological templates have many advantages, such as uniform morphology, economy, and environmental friendliness. For example, Pan et al. synthesized In₂O₃ hollow microspheres using yeasts as templates via a simple co-precipitation route and further evaluated their photoelectrocatalytic performance [45]. Yang et al. synthesized spinous ZrO₂ core–shell microspheres with good hydrogen storage properties via a hydrothermal method using pollen as a bio-template [46]. In our previous work, hollow porous ZrO₂ microspheres were prepared by microwave solvothermal method using rape pollen as a template [47]. However, the synthesis of ZrO₂ doped TiO₂ spinous hollow microspheres using sunflower pollen templates has not been reported so far.

In this paper, ZrO₂ doped TiO₂ spinous hollow microspheres were successfully synthesized by a facile solvothermal method using sunflower pollen as templates. The photocatalytic performance was examined by RhB degradation in aqueous solution under UV-light irradiation. Compared with TiO₂ spinous hollow microspheres and ZrO₂–TiO₂ particles, ZrO₂ doped TiO₂ spinous hollow microspheres exhibited a higher photocatalytic performance, indicating the essential role of ZrO₂ dopant and the unique spinous hollow structure.

2. Experimental

2.1. Materials

Sunflower pollen was purchased from Yixing Shicheng Kanguhuang Bee Industry Co. Ltd. (Yixing, China). Zirconium n-butoxide (80 wt%) and titanium butoxide were obtained from Shanghai Alading Reagent Co. Ltd. (AR, Shanghai, China). Rhodamine B (RhB) was purchased from Tianjin Bodi Chemical Reagent Co. Ltd. (AR, Tianjin, China). Isopropyl alcohol (IPA), P-benzoquinone (BQ) and triethanolamine (TEOA) were purchased from Chengdu Kelong Co. Ltd. (AR, Chengdu, China). All the reagents were of analytical grade and used without any further purification. Distilled water and absolute alcohol were used throughout the experiments.

2.2. Fabrication of TiO₂ spinous hollow microspheres

TiO₂ spinous hollow microspheres were prepared as follows: 1.0 g sunflower pollen template was dispersed into 30 mL absolute ethanol by ultrasonication for 30 min, then titanium butoxide (0.45 mL) was added under continuous magnetic stirring. After 2-h stirring, distilled water (0.45 mL) was added and then the mixture was added into a sealed Teflon-lined autoclave and heated at 100°C for 18 h. After the Teflon-lined autoclave was cooled down to room temperature, the products were collected by centrifugation and washed with distilled water and absolute ethanol for three times, respectively. Finally, the TiO₂ spinous hollow microspheres were obtained by calcining the products at 600°C for 2 h at a ramp rate of 1.5°C/min. and designated as T-SH.

2.3. Fabrication of ZrO₂ doped TiO₂ spinous hollow microspheres

The method for preparing ZrO₂ doped TiO₂ spinous hollow microspheres was the same as that of TiO₂ spinous hollow microspheres, except that the mixture of titanium butoxide and zirconium n-butoxide was added instead of titanium butoxide. The volume of distilled water added was the same as that of the mixed ester. In addition, for comparison, ZrO₂ doped TiO₂ particles were fabricated via the same method without templates. The amount of zirconium n-butoxide added and the corresponding abbreviations of the samples are summarized in Table 1.
2.4. Characterization

The morphology and structural analysis of the samples were examined by a scanning electron microscope (SEM, S-4800, Hitachi, Japan). The crystal structures of the products were tested by X-ray diffraction (XRD, ultima IV, Rigaku, Japan) with Cu Kα radiation (\(\lambda = 0.154\) nm) at a scanning rate of 8°/min in 2θ range from 10° to 80°. Elemental composition information of the samples was collected by an ESCALAB 250Xi X-ray photoelectron spectrometer (XPS, Thermo Scientific, USA) with a monochromatic Al Kα Alpha radiation (150 W, 15 KV, and 1486 eV). Fourier transform infrared (FT-IR) spectra were measured using KBr pellet on a Fourier transform infrared spectrometer (FT-IR, Nicolet 380, Thermo, America). The UV–Vis diffuse reflectance spectra of the samples were analyzed by UV–2550 UV–Vis spectrophotometer (UV–Vis DRS, UH4150, Hitachi, Japan). The N₂ adsorption-desorption isotherms were obtained at 77.350 K using a micromeritics surface area and pore volume analyzer (TriStar II 3020, USA). Zeta potential was tested by a microiontophoresis apparatus (Powereach, JS94H, China).

2.5. Photocatalytic activity tests

The photocatalytic activity was evaluated by degradation of RhB in aqueous solutions under UV-light irradiation. Typically, 20 mg of catalyst powder was dispersed in 50 mL aqueous solution with an RhB concentration of 20 mg/L. The pH of the solution was adjusted with HCl and NaOH as needed. The suspension was magnetically stirred in dark for 1 h to obtain the adsorption-desorption equilibrium between RhB and the catalysts. Then the mixture was transferred to the photochemical reactor and irradiated under UV-light (UV lamp, 120 W, 254 nm). 2 mL solution was sampled at regular intervals and the catalysts were separated by centrifugation at 10000 rpm for 3 min. The RhB concentration was measured using
a UV–visible spectrophotometer (UH-4150) at a wavelength of 554 nm. All photocatalytic experiments were repeated three times under the same conditions.

3. Results and discussion

3.1. Characterization of the products

Fig. 1 shows the SEM images of the obtained products and sunflower pollen. The sunflower pollen is close to spherical with spines on the surface. Each pollen grain is approximately 25 μm in diameter. ZrO₂ doped TiO₂ spinous hollow microspheres before calcination have similar morphology and sizes to those of sunflower pollen (Fig. 1b). The morphologies of T-SH, ZT-SH-1, ZT-SH-2, ZT-SH-3, and ZT-SH-4 are shown in Fig. 1c, d, e and f, respectively. Although the ratio of ZrO₂ and TiO₂ varies, these samples have roughly the same morphology, and retain the spherical shape of sunflower pollen template with a spine length of 1–2 μm. Compared to the pollen, the diameter of the ZrO₂ doped TiO₂ spinous hollow microspheres is smaller (12–15 μm), which may be due to the removal of pollen template and the changes of ZrO₂ and TiO₂ crystallinity under high calcination temperatures [39,43]. Such shrinkage was also observed in other studies using pollen to prepare hollow oxides [14,28]. The hollow structure can

![Fig. 2. SEM images of the TiO₂ spinous hollow microspheres with different amounts of Titanium butoxide: (a) 0.3 mL, (b) 0.45 mL, (c) 0.6 mL.](image)

![Fig. 3. (a) XRD patterns of T-SH, ZT-SH-1, ZT-SH-2, ZT-SH-3, ZT-SH-4, and ZrO₂ particles, (b) the (1 0 1) planes of T-SH, ZT-SH-1, ZT-SH-2, ZT-SH-3, and ZT-SH-4 intercepted from (a).](image)

<table>
<thead>
<tr>
<th>Samples</th>
<th>D₁₀₁ (nm)ᵃ</th>
<th>S_BET (m²/g)ᵇ</th>
<th>D_pore (nm)ᵇ</th>
<th>V_pore (cm³/g)ᵇ</th>
<th>E_g (eV)ᶜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-SH</td>
<td>20.4</td>
<td>43.41</td>
<td>3.7</td>
<td>0.20</td>
<td>3.28</td>
</tr>
<tr>
<td>ZT-SH-1</td>
<td>15.8</td>
<td>56.03</td>
<td>3.7</td>
<td>0.21</td>
<td>3.42</td>
</tr>
<tr>
<td>ZT-SH-2</td>
<td>17.7</td>
<td>56.24</td>
<td>3.7</td>
<td>0.17</td>
<td>3.42</td>
</tr>
<tr>
<td>ZT-SH-3</td>
<td>18.1</td>
<td>56.42</td>
<td>3.8</td>
<td>0.19</td>
<td>3.44</td>
</tr>
<tr>
<td>ZT-SH-4</td>
<td>19.7</td>
<td>53.22</td>
<td>3.8</td>
<td>0.16</td>
<td>3.44</td>
</tr>
<tr>
<td>ZT-P-3</td>
<td>/</td>
<td>36.21</td>
<td>4.1</td>
<td>0.18</td>
<td>/</td>
</tr>
<tr>
<td>ZrO₂ particles</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>4.96</td>
</tr>
</tbody>
</table>

ᵃ Calculated from the main peak (1 0 1) in XRD patterns shown in Fig. 3 using the Scherrer equation.
ᵇ Estimated by BET N₂ adsorption method (Fig. 7).
ᶜ Estimated by UV–vis diffuse reflectance spectra (Fig. 6).
be clearly seen from the broken microspheres (ZT-SH-3, Fig. 1h), which can be ascribed to the CO2 release during the carbonization of organic matter in pollen [35]. As shown in Fig. 1i (ZT-P-3), the samples fabricated without templates are irregular aggregated particles. All the particle products (ZT-P-1, ZT-P-2, ZT-P-3, and ZT-P-4) share similar morphologies.

Fig. 2 shows the SEM images of TiO2 spinous hollow microspheres prepared with different amount of titanium butoxide. As can be seen, the integrity of sunflower pollen cannot be maintained with low titanium butoxide content (0.3 mL, Fig. 2a), while severe aggregation occurred when excess titanium butoxide was added (0.6 mL, Fig. 2c). With appropriate amount of titanium butoxide, spherical, non-aggregated final products were obtained (0.45 mL, Fig. 2b). Therefore, a total volume of ~0.45 mL of zirconium n-butoxide and titanium butoxide in Table 1) is recommended for ZrO2 doped TiO2 spinous hollow microspheres synthesis using the procedure reported here.

The crystallinity and crystalline phase of the as-prepared samples are shown in Fig. 3. Fig. 3a indicates that TiO2 is present in anatase phase in all the samples, with characteristic diffraction peaks at 25.26, 36.94, 48.05, 53.89, 55.06 and 62.68° assigned to (1 0 1), (0 0 4), (1 0 5), (2 1 1) and (2 0 4) crystal planes of anatase TiO2, respectively [28,48,49]. The XRD pattern of pure ZrO2 sample is also shown in Fig. 3a, but no characteristic diffraction peaks of ZrO2 are observed in ZT-SH-1 and ZT-SH-2. This may be ascribed to the low amount of ZrO2 dopant and the efficient intercalation of Zr4+ into the TiO2 crystal lattice sites [35]. In contrast, a weak tetragonal crystal ZrO2 peak at 30.32° [46] appears in ZT-SH-3 and ZT-SH-4 samples which are doped with higher amounts of ZrO2. Fig. 3b shows the anatase (1 0 1) diffraction peaks of the ZrO2 doped TiO2 spinous hollow microspheres and TiO2 spinous hollow microspheres. The crystallite size was calculated according to the Scherrer Formula: $D_\text{hkl} = \frac{0.9 \lambda}{(\beta \cos \theta)^{-1}}$ [42].

where λ is the X-ray wavelength, β is the full width at half maximum and θ is Bragg angle. The results are summarized in Table 2.

![Fig. 4. XPS full survey spectra of T-SH and ZT-SH-3 (a), the XPS spectra of Ti 2p (b), O 1s (c) and Zr 3d (d) in ZT-SH-3, and Ti 2p (e) and O 1s (f) in T-SH.](image-url)
Clearly, the crystal size of ZrO2 doped TiO2 is smaller than that of TiO2, i.e. doping ZrO2 in TiO2 can decrease the crystallite size of TiO2. This may be explained by different nuclei and coordination geometry of ZrO2 and TiO2 [29].

The chemical compositions of the samples are confirmed by XPS measurements, focusing on Here T-SH (control) and ZT-SH-3 (highest photocatalytic activity, Section 3.3). The XPS survey of T-SH and ZT-SH-3 (Fig. 4a) shows that the main elements are Ti, O, and Zr for ZT-SH-3, and Ti and O for T-SH. In addition, both samples contain carbon, which may come from the carbonization of pollen during calcination. The high-resolution Ti 2p XPS spectra of ZT-SH-3 (Fig. 4b) and T-SH (Fig. 4e) can be deconvoluted into two peaks with binding energies at 464.6 and 459.0 eV assigned to Ti4+ [35]. In addition, there is an inauspicious peak at 465.2 eV, which can be attributed to the Zr–Ti chemical bonds [50]. The O 1 s peaks localized at 532.4 eV and 530.5 eV in the spectra of ZT-SH-3 (Fig. 4c) and T-SH (Fig. 4f) can be ascribed to −OH and O2−, respectively [37]. The XPS spectrum of Zr 3d of ZT-SH-3 is shown in Fig. 4d, where the peaks with binding energies at 184.9 (Zr 3d3/2) and 182.8 eV (Zr 3d5/2) confirm the presence of Zr–O. [28]. The peaks at 184.5 (Zr 3d3/2) and 182.1 eV (Zr 3d5/2) can be attributed to the =Zr–O=–Ti= chemical bonds [37]. The existence of =Zr–O=–Ti= and Zr–Ti chemical bonds results from the phase contact between ZrO2 and TiO2, which indicates that ZrO2 and TiO2 form a homogenous composite material [35]. The mole fraction of ZrO2 in ZT-SH-3 is estimated to be 11.9% based on the peak area of XPS spectra (Fig. 4b and d), which is close to the theoretical value (12.6%).

The FT-IR spectra of ZT-SH-1, ZT-SH-2, ZT-SH-3 and ZT-SH-4 (Fig. 5) show a peak at 1300 cm−1 corresponding to the C–O stretching vibration. This may come from the carhide formed during pollen calcination [35]. The peaks at 3400 cm−1 (ZT-SH-1, ZT-SH-2, ZT-SH-3) and 3590 cm−1 (ZT-SH-4) correspond to the vibration of =O–H symmetry and asymmetry stretching. The intense peak around 1630 cm−1 is attributed to the bending vibration of the Ti–OH bond [30]. Two distinct characteristic peaks can be seen from the infrared spectrum of the T-SH. The peak around 3290 cm−1 corresponds to the stretching vibration of hydroxyl and the peak at 1620 cm−1 indicates the existence of Ti–OH bond [35,51]. Obviously, the intensities of these peaks in ZT-SH-1, ZT-SH-2, ZT-SH-3 and ZT-SH-4 are much higher than those of T-SH, indicating that ZrO2 doping increased the surface hydroxyl groups or water molecules. This feature can promote the e−−h+ pair separation under UV-light irradiation by trapping the electrons produced in the conduction band, which eventually leads to the formation of surface free hydroxyl radicals (−OH), thus improving the photocatalytic capacity [35].

The UV–Vis absorption spectra of the samples are shown in Fig. 6a. Apparently, the spectra of ZT-SH-1, ZT-SH-2, ZT-SH-3, and ZT-SH-4 are quite different from those of ZrO2 and T-SH. The band gap energy of the prepared samples was calculated by Eq. (1) [42]:

\[
(\text{Ahv})^2 = K(hv - E_g)
\]

where \(E_g\) is the band gap energy, \(h\nu\) stands for photon energy, \(K\) and \(A\) represent proportionality constant and absorption coefficient, respectively. The normalized graphs of \((\text{Ahv})^2\) for the photon energy of the samples are shown in Fig. 6b and the band gap energy of all samples is shown in Table 2. The band gap energy of ZrO2 particles and T-SH is 4.96 and 3.28 eV, respectively. Compared with T-SH, the addition of ZrO2 into TiO2 can lead to a slightly higher band gap, resulting in the band gap energy of 3.42–3.45 eV for ZT-SH-1, ZT-SH-2, ZT-SH-3, and ZT-SH-4. Compared with TiO2 spinous hollow microspheres, the slight blue shift of band gap energy in the ZrO2 doped TiO2 spinous hollow microspheres can be attributed to the larger band gap of ZrO2 [48]. ZrO2 can introduce new energy levels into the band gap of TiO2, which provide electron capture centers and contribute to the separation of electron-hole pairs in the process of photocatalysis [13,52,53].

The specific surface area and pore size of the as-synthesized T-SH, ZT-SH-1, ZT-SH-2, ZT-SH-3, ZT-SH-4, and ZT-P-3 were determined by the nitrogen adsorption–desorption isotherm (Fig. 7).
Fig. 7 shows that the isotherms of T-SH, ZT-SH-1, ZT-SH-2, ZT-SH-3, ZT-SH-4, and ZT-P-3 all belong to type III with a type H1 hysteresis loop [35,54]. The BET specific surface area, pore diameter, and pore volume of all samples are summarized in Table 2. Compared with ZT-P-3, the hollow samples have a larger specific surface area which can be ascribed to the hollow structure of the samples. Pore volume and pore diameter are calculated using the Barrett-Joyner-Halenda (BJH) formula. As shown in Table 2, the diameters of T-SH, ZT-SH-1, ZT-SH-2, ZT-SH-3, ZT-SH-4 and ZT-P-3 all fall in the range of 3.7–4.1 nm. Meanwhile, their pore volumes are all within the range of 0.18–0.20 cm3/g.

3.2. Formation mechanism

From the observed SEM, FT-IR (Fig. S1) and XRD (Fig. S2) results, the formation mechanism of ZrO$_2$ doped TiO$_2$ spinous hollow microspheres is proposed in Fig. 8. Sunflower pollen with many active surface functional groups [55] can adsorb zirconium n-butoxide and titanium butoxide molecules through electrostatic attractions. With the addition of deionized water, Zr (IV) and Ti (IV) are transformed into ZrO$_2$ and TiO$_2$ on the pollen wall respectively under hydrothermal conditions. Finally, the ZrO$_2$ doped TiO$_2$ spinous hollow microspheres are formed after the removal of sunflower pollen through calcination at 600 °C for 2 h.

3.3. Photocatalytic activity

The photocatalytic activities of the products were evaluated by RhB degradation (pH ≈ 7) under UV light and the results are shown in Fig. 9a. First, the adsorption-desorption equilibrium between the photocatalysts and RhB can be reached in 1 h in dark. After 60 min of UV-light illumination, the RhB degradation efficiency of all the catalysts follows the order: ZT-SH-3 (96.3%) > ZT-SH-2 (90.9%) > ZT-SH-4 (88.8%) > ZT-SH-1 (80.9%) > ZT-P-3 (76.6%) > T-SH (65.7%) > ZrO$_2$ particles (14.6%). All the ZrO$_2$ doped TiO$_2$ spinous hollow microsphere samples outperformed spinous hollow TiO$_2$ microspheres as well as the pure ZrO$_2$. ZT-SH-3 exhibited the highest activity. Therefore, the addition of ZrO$_2$ into TiO$_2$ significantly improved the photocatalytic performance. The reasons for such improvement include the inhibition of the recombination of e$^-$/h$^+$ pairs [52,53] and the formation of free radicals due to the surface hydroxyl groups or water molecules on zirconium doped samples [35]. Furthermore, the photocatalytic activity of hollow products (ZT-SH-3) is about 20% higher than that of the particle products (ZT-P-3) prepared with the same amount of ZrO$_2$ and TiO$_2$, due to the larger specific surface area of the former. A larger specific surface area can result in more photocatalytic active sites and accelerate the adsorption and degradation of dye molecules. [42] The time-dependent UV–Vis absorption spectra of RhB with ZT-SH-3 as the photocatalyst is shown in Fig. 9b. The digital photo (Fig. 9b, inset) shows that the RhB aqueous solution was entirely decolorized after 60 min irradiation, indicating the efficient degradation of RhB.

In order to obtain quantitative information of the photocatalytic activity of the as-prepared products, the kinetics of photocatalytic degradation of RhB was also investigated. The degradation of RhB can be described using the pseudo-first-order kinetic model as shown below [25,42]:

$$\ln(C_0 - C_t) = kt$$

(2)

where k is the first-order apparent rate constant and t is the light irradiation time. C_0 and C_t represent the concentrations of RhB at beginning and time t, respectively. The value of the apparent rate constant k and the correlation coefficient R^2 are shown in Fig. 9c. The highest rate constant of ZT-SH-3 (0.0454 min$^{-1}$) is consistent with the results shown in Fig. 9a.

The effect of solution pH on the photocatalytic degradation of RhB using ZT-SH-3 is illustrated in Fig. 9d. More than 95% of RhB was degraded when pH was higher than 7. In contrast, 83% and 73% were degraded at pH 5 and 3, respectively. The solution pH can affect the electrical properties of the catalyst particles (Fig. S3), and further affect the adsorption of dye molecules and

Fig. 8. Schematic illustration of the formation of ZrO$_2$ doped TiO$_2$ spinous hollow microspheres.
consequently the degradation efficiency [35,36,56]. Although the photocatalytic activity of ZrO2 doped TiO2 spinous hollow microspheres under acidic conditions is weaker than that under neutral and alkaline conditions, more than 70% removal achieved under all conditions indicates that the ZrO2 doped TiO2 spinous hollow microspheres can effectively degrade the dye pollutants within a wide pH range.

The reusability of ZT-SH-3 was tested in the recycling experiments. As shown in Fig. 10, ZT-SH-3 maintained high photocatalytic activities even after 6 cycles. Moreover, ZT-SH-3 can still maintain its initial morphology after multiple cycles (Fig. 10b and c). These results indicate the high physical stability and reusability of ZT-SH-3.

To elucidate the photocatalytic mechanism of ZT-SH-3 and probe the active species in the photocatalytic process, h+, O2·, and •OH scavengers were added in the trapping experiments, where isopropyl alcohol (IPA; 1 mM), p-benzoquinone (BQ; 1 mM), and triethanolamine (TEOA; 1 mM) were used as the hydroxyl radical, superoxide radical, and hole quenchers, respectively [50]. As can be seen in Fig. 11, the addition of TEOA, BQ, and IPA significantly inhibited the RhB degradation, resulting in less than 50% removal, indicating that h+, •OH, and O2· radicals all contributed to the photocatalytic degradation of dyes [37]. The e− and h+ transfer behaviors during the photocatalytic process were illustrated in Scheme 1. The reaction process can be represented in Eqs. (3)–(11) [13,30].

$$\text{TiO}_2 \xrightarrow{\text{UV-Vis}} \text{TiO}_2(e^- + h^+)$$

Fig. 9. Photocatalytic degradation of RhB using ZrO2 doped TiO2 spinous hollow microspheres under UV-light irradiation (a), the time-dependent UV–vis absorption spectra of RhB with ZT-SH-3 as photocatalyst (b), the photodegradation kinetic curves of samples (c) and the effect of pH on the photocatalytic degradation of RhB with ZT-SH-3 as photocatalyst (d).

Fig. 10. Cycling runs for the photodegradation of RhB over ZT-SH-3 (a), SEM image of ZT-SH-3 after 3 cycles (b) and 6 cycles (c).
ZrO$_2$ (e$^-$)/C0 and h$^+$ can convert O$_2$ and -OH in water into O$_2$ and -OH respectively (Eqs.(5)-(10)). These active species (O$_2$, -OH, and h$^+$) with strong oxidizing properties can oxidize RhB to CO$_2$, H$_2$O and other transformation products (Eqs. (11)). However, as both charge separation and charge recombination can occur simultaneously, the efficiency of photocatalysis is determined by the competition between these two process. For ZrO$_2$ doped TiO$_2$ spinous hollow microspheres, a small number of electrons can be excited to CB of ZrO$_2$ and be drifted to CB of TiO$_2$. At the same time, the positive hole centers (h$^+$) from TiO$_2$ are trapped in the VB of ZrO$_2$, therefore, the electron-hole pair recombination may be inhibited [35].

4. Conclusions

ZrO$_2$ doped TiO$_2$ spinous hollow microspheres with excellent photocatalytic properties were prepared through solvothermal process. The preparation method was facile with low cost and the morphology of the final product was controllable. The as-prepared ZrO$_2$ doped TiO$_2$ spinous hollow microspheres with a uniform diameter of 12–15 μm exhibited higher photocatalytic activities than that of TiO$_2$ spinous hollow microspheres and ZrO$_2$ doped TiO$_2$ nanoparticles. 96.3% of RhB was degraded after 60 min UV light irradiation using ZrO$_2$ doped TiO$_2$ spinous hollow microsphere as the photocatalyst. The dye degradation followed a pseudo-first-order kinetics and h$^+$, -OH, and O$_2$ were found to be

\[
\begin{align*}
\text{ZrO}_2 \xrightarrow{\text{UV-Vis}} & \text{ZrO}_2 (e^- + h^+) \\
\text{TiO}_2 (e^-) + O_2 & \rightarrow \text{TiO}_2 + O_2^{-2} \\
\text{ZrO}_2 (e^-) + O_2 & \rightarrow \text{ZrO}_2 + O_2^{-2} \\
\text{TiO}_2 (h^+) + H_2O & \rightarrow \text{TiO}_2 + OH + H^+ \\
\text{TiO}_2 (h^+) + OH^- & \rightarrow \text{TiO}_2 + OH \\
\text{ZrO}_2 (h^+) + H_2O & \rightarrow \text{ZrO}_2 + OH + H^+ \\
\text{ZrO}_2 (h^+) + OH^- & \rightarrow \text{ZrO}_2 + OH
\end{align*}
\]

Under UV-light irradiation, the photogenerated holes (h$^+$) and electrons (e$^-$) are in their valence band (VB) and conduction band (CB), respectively (Eqs. (3) and (4)) [57,58]. e$^-$ and h$^+$ can convert O$_2$ and -OH in water into O$_2$ and -OH respectively (Eqs.(5)-(10)). These active species (O$_2$, -OH, and h$^+$) with strong oxidizing properties can oxidize RhB to CO$_2$, H$_2$O and other transformation products (Eqs. (11)). However, as both charge separation and charge recombination can occur simultaneously, the efficiency of photocatalysis is determined by the competition between these two process. For ZrO$_2$ doped TiO$_2$ spinous hollow microspheres, a small number of electrons can be excited to CB of ZrO$_2$ and be drifted to CB of TiO$_2$. At the same time, the positive hole centers (h$^+$) from TiO$_2$ are trapped in the VB of ZrO$_2$, therefore, the electron-hole pair recombination may be inhibited [35].

4. Conclusions

ZrO$_2$ doped TiO$_2$ spinous hollow microspheres with excellent photocatalytic properties were prepared through solvothermal process. The preparation method was facile with low cost and the morphology of the final product was controllable. The as-prepared ZrO$_2$ doped TiO$_2$ spinous hollow microspheres with a uniform diameter of 12–15 μm exhibited higher photocatalytic activities than that of TiO$_2$ spinous hollow microspheres and ZrO$_2$ doped TiO$_2$ nanoparticles. 96.3% of RhB was degraded after 60 min UV light irradiation using ZrO$_2$ doped TiO$_2$ spinous hollow microsphere as the photocatalyst. The dye degradation followed a pseudo-first-order kinetics and h$^+$, -OH, and O$_2$ were found to be
the main active species. Furthermore, ZrO2 doped TiO2 spinous hollow microspheres exhibited satisfactory performance under both acid and alkaline conditions and good reusability. This bio-template strategy may be further extended to the preparation of other hollow structure composites such as carbon and ceramic oxide based composites for other potential applications including electromagnetic interference (EMI) shielding [21, 59–61], sensing and functional structural materials; and energy storage [62–71].

Appendix A: Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jcis.2018.05.091.

References

