Magnetite—Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior

Jiang Guo,† Hongbo Gu,† Huige Wei,‡ Qianyi Zhang,‡ Neel Haldolaarachchige,ζ Ying Li,‡ David P. Young,ζ Suying Wei,*# and Zhanhu Guo*†

†Integrated Composites Lab (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710, United States
‡Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
#Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
ζDepartment of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
*Supporting Information

ABSTRACT: The conductive polypyrrole (PPy) polymer nanocomposites (PNCs) reinforced with different magnetite (Fe₃O₄) nanoparticle loadings have been successfully synthesized by using a facile surface initiated polymerization (SIP) method. The scanning electron microscope (SEM) is used to characterize the surface morphology of the as-received Fe₃O₄ nanoparticles (NPs), pure PPy and Fe₃O₄/PPy PNCs. The high-resolution transmission electron microscope (HRTEM) is used to observe the nanoparticle dispersion within the polymer matrix. The chemical structure of the PNCs is characterized by Fourier transform infrared (FT-IR) spectroscopy. The thermal stability of the Fe₃O₄/PPy PNCs is assessed by thermogravimetric analysis (TGA). X-ray diffraction (XRD) results reveal that the addition of NPs has a significant effect on the crystallization of PPy. The switching frequency, at which the permittivity switches from negative to positive, is observed in the synthesized pure PPy and Fe₃O₄/PPy PNCs. The optical band gap of Fe₃O₄/PPy PNCs is studied by ultraviolet—visible diffuse reflectance spectroscopy (UV—vis DRS). The Fe₃O₄/PPy PNCs exhibit no hysteresis loop, indicating the superparamagnetic behavior. Temperature-dependent resistivity indicates a quasi-3-dimensional variable range hopping (VRH) electrical conduction mechanism for the synthesized samples. The positive magnetoresistance (MR) is observed in the synthesized pure PPy at room temperature and analyzed by the wave function shrinkage model. Meanwhile, the negative MR is obtained in the synthesized magnetic PNCs at room temperature and analyzed by the orbital magnetoc conductivity theory (forward interference model).

1. INTRODUCTION

Polymer nanocomposites (PNCs) are prepared by dispersing different functional nanoparticles (NPs) into a polymer matrix. Owing to their cost-effective processability, lightweight, flexible, increased tensile strength, larger toughness, tunable mechanical, magnetic and electrical properties1–3 arising from the combined characteristics of parent constituents into a single material, PNCs have attracted great interest. Conductive PNCs have been extensively investigated because of their potential applications in light emitting devices, batteries, electromagnetic interface shielding,1 telecoms, electronics, fire retardants, biosensors, electrodes for electroporation, and corrosion resistant coatings.4 Compared with other conductive polymers including polyaniline (PANI), polythiophene, and poly-(DNTD), polypyrrole (PPy) has attained more attention due to its high electrical conductivity, low cost, easy preparation, high yield, high pseudocapacitance, and environmental stability.5 PPy has been widely used in gas sensors, biosensors, electromagnetic irradiation shielding materials, electrode
materials, photovoltaic cells, coating materials, and corrosion inhibitors.5,6,7

Fe\textsubscript{3}O\textsubscript{4} is a mixed iron oxide with a cubic inverse spinel structure, \textit{AB}_{2}O\textsubscript{4}.6 In the \textit{AB}_{2}O\textsubscript{4}, the A site is occupied by Fe3+ and the B sites have an equal mix of Fe3+ and Fe2+. Fe\textsubscript{3}O\textsubscript{4} is a half-metallic ferromagnetic material, in which the density state at the Fermi level \(N(E_f)\) is completely polarized and the conductivity is determined by the metallic electron spin charge carriers because of the coexistence of metallic electron spin and insulating electron spin.10 Because of the unique properties, such as catalytic, magnetic, and electrical properties,2,11 Fe\textsubscript{3}O\textsubscript{4} has been widely applied in many fields such as catalysis, biomedicine, information storage, color imaging, cell separation, and environment remediation.12,13 Incorporating the Fe\textsubscript{3}O\textsubscript{4} NPs into polymer matrix can widen their deployments in electronic, biomedical, and optical fields.7,14

Recently, there have been many works on the study of magnetic PPy PNCs. For example, Dey et al.15 have prepared the Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs with a very large dielectric constant using ammonium peroxydisulfate (APS) as oxidant. Chen et al.18 have synthesized Fe\textsubscript{3}O\textsubscript{4}/PPy using the common ion effect and studied the influence of concentration of oxidant FeCl\textsubscript{3} solution on the properties of PPy/Fe\textsubscript{3}O\textsubscript{4} composites, which show the electrical and ferromagnetic properties. Wang et al.17 have successfully encapsulated Fe\textsubscript{3}O\textsubscript{4} with PPy via emulsion polymerization using polyvinyl alcohol as a surfactant and studied the application of Fe\textsubscript{3}O\textsubscript{4}/PPy in biomedical application. Chen et al.18 have prepared the Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs and investigated magnetic and electrical properties of Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs. However, the negative permittivity and magnetoresistance (MR) of Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs have been rarely reported so far.

Metamaterials formed from either periodic or random arrays of scattering elements are artificial materials.19,20 The two macroscopic electromagnetic parameters (the electric permittivity \(\varepsilon\), and the magnetic permeability \(\mu\)) are used to characterize the metamaterials.20 Compared with conventional materials, metamaterials can exhibit unique electromagnetic behaviors due to the negative permittivity and negative permeability at a certain frequency.21 The metamaterials can be used to design invisible devices (such as invisibility cup),22 super lenses,23 and cloaking.23

MR is a phenomenon that reflects the resistance change of a material under an external magnetic field.24 The MR effect observed in the organic materials is called organic magnetoresistance (OMAR),25 which is related to the formation of the excitons and caused by the trapping of charge carrier at triplet excitons.26 There are many studies on the MR effect of PPy polymer reinforced with different nanoparticles. For example, Abou-Elazab et al.27 have found the positive MR in the PPy, which is prepared by electrochemical oxidation of pyrrole and doped with tetraethylammonium toluene-4-sulfonate. Long et al.28 have studied the negative MR of multiwalled carbon nanotube/PPy synthesized using an in situ chemical oxidative polymerization method. However, there are no reports regarding the negative MR of the Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs.

In this work, Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs are synthesized by using the surface initiated polymerization (SIP) method. The Fourier transform infrared (FT-IR) spectroscopy is used to characterize the chemical structure of the as-received Fe\textsubscript{3}O\textsubscript{4} NPs, pure PPy, and Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs. The thermal stability of the Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs is performed by thermogravimetric analysis (TGA). The effects of Fe\textsubscript{3}O\textsubscript{4} NPs on the crystallization of the PPy are also studied by X-ray diffraction (XRD). Scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM) are used to depict the dispersion and morphology of the as-received Fe\textsubscript{3}O\textsubscript{4} NPs, pure PPy, and Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs. The frequency-dependent permittivity, temperature-dependent resistivity, MR, optical properties, and magnetic properties are systematically investigated as well. The positive magnetoresistance (MR) observed in the synthesized pure PPy at room temperature is analyzed by the wave function shrinkage model and the negative MR obtained in the synthesized magnetic PNCs at room temperature is analyzed by the orbital magnetococonductivity theory (forward interference model), respectively.

2. EXPERIMENTAL SECTION

2.1. Materials. Pyrrole (C\textsubscript{4}H\textsubscript{5}N, \(\geq 98\%\)), ammonium persulfate (APS, (NH\textsubscript{4})\textsubscript{2}S\textsubscript{2}O\textsubscript{8}, \(98\%\)), and \(p\)-toluenesulfonic acid (PTSA, C\textsubscript{6}H\textsubscript{4}SO\textsubscript{3}H, \(\geq 98.5\%\)) were purchased from Sigma-Aldrich. The Fe\textsubscript{3}O\textsubscript{4} NPs were obtained from Nanjing Emperor Nano Material Co., Ltd., China. All the chemicals were used as received without any further treatment.

2.2. Fabrication of Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs. Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs were fabricated by using the SIP method. First, the Fe\textsubscript{3}O\textsubscript{4} NPs were dispersed in an aqueous solution containing PTSA (15 mmol) and APS (9 mmol) in 100 mL of deionized water by 1-h sonication (Branson 8510) and mechanical stirring (SCILOGEX OS20-Pro LCD Digital Overhead Stirrer, 300 rpm) in an ice–water bath. Second, the pyrrole solution (18 mmol, 25 mL deionized water) was mixed with the above Fe\textsubscript{3}O\textsubscript{4} NPs suspension and mechanically and ultrasonically stirred continuously for an additional 1.5 h in the ice–water bath for further polymerization. The product was vacuum filtered and washed with deionized water several times. The precipitant was further washed with 1 mol L−1 PTSA. The final synthesized nanocomposites were dried at 60 °C in an oven overnight. The Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs with a nanoparticle loading of 10, 20, 40, and 60 wt % were fabricated, respectively. The pure PPy was fabricated following the above procedures without adding any NPs for comparison.

2.3. Characterizations. The Fourier transform infrared (FT-IR) spectra of the products were obtained on a Bruker Inc. Vector 22 (coupled with an ATR accessory) in the range of 500 to 2200 cm−1 at a resolution of 4 cm−1. TGA analysis was conducted by TA Instruments TGA Q-500 with a heating rate of 10 °C min−1 under air-flow rate of 60 mL min−1 from 25 to 700 °C. XRD was measured by D/max-rB wide-angle X-ray diffractometer at a Cu K\textalpha\ wavelength of 0.154 nm. The scanning rate was 4° min−1 from 10 to 80°. The SEM was performed on a JEOL JSM-6510LV system after coating with carbon. The HRTEM was performed on the Hitachi H9000NAR. Dielectric properties were investigated by a LCR meter (Agilent, E4980A) equipped with a dielectric test fixture (Agilent, 16451B) at the frequency of 20 to 2 \times 106 Hz at room temperature. Pure PPy and Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs were pressed in a form of disc pellet with a diameter of 25 mm by applying a pressure of 50 MPa in a hydraulic presser and the average thickness of the samples was about 0.6 mm. The same samples were also used to measure the resistivity, MR, and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The resistivity was measured by a standard four-probe method from 100 to 290 K. The temperature-dependent resistivity was used to determine the electrical conduction mechanism in the pure PPy and Fe\textsubscript{3}O\textsubscript{4}/PPy PNCs. UV–vis DRS of pure PPy and
Fe₃O₄/PPy PNCs was recorded on a UV/vis/NIR spectrophotometer (PC, JASCO Model V-670) equipped with a Jasco ISN-723 diffuse reflectance accessory. MR was carried out with use of a standard four-probe technique by a 9-T Physical Properties Measurement System (PPMS) by Quantum Design at room temperature. The magnetic properties were also investigated in a 9-T Physical Properties Measurement System (PPMS) by Quantum Design.

3. RESULTS AND DISCUSSION

3.1. SEM and HRTEM Observations

Figure 1 shows the SEM images of the as-received Fe₃O₄ NPs, pure PPy, and Fe₃O₄/PPy PNCs with a Fe₃O₄ nanoparticle loading of (c) 20 and (d) 60 wt %, respectively.

Figure 2. HRTEM images of (a) as-received Fe₃O₄ NPs, (b) Fe₃O₄/PPy PNCs with a Fe₃O₄ nanoparticle loading of 40 wt %, and (c) selected area electron diffraction (SAED) of Fe₃O₄/PPy PNCs with a Fe₃O₄ nanoparticle loading of 40 wt %.

Fe₃O₄/PPy PNCs was recorded on a UV/vis/NIR spectrophotometer (PC, JASCO Model V-670) equipped with a Jasco ISN-723 diffuse reflectance accessory. MR was carried out with use of a standard four-probe technique by a 9-T Physical Properties Measurement System (PPMS) by Quantum Design at room temperature. The magnetic properties were also investigated in a 9-T Physical Properties Measurement System (PPMS) by Quantum Design.
to be relatively loosely packed compared to the Fe3O4/PPy PNCs, Figure 1c,d. The surface of the as-received Fe3O4 NPs is smooth. However, the surface of the Fe3O4/PPy PNCs becomes rougher due to the polymerization that occurred on the surface of Fe3O4 NPs. The HRTEM images of the as-received Fe3O4 NPs and the Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 40 wt % are shown in Figure 2a,b. The HRTEM image of the as-received Fe3O4 NPs, Figure 2a, shows that the average diameter of Fe3O4 NPs is about 11.14 nm measured by Nano measure software. However, this result is different from that observed in the SEM (59.61 nm), Figure 1a, in which some of the Fe3O4 NPs agglomerate together because of the magnetic dipole–dipole interactions (also called dipolar coupling, which means direct interaction between two magnetic dipoles) between Fe3O4 NPs.29 The clear lattice fringes presented in Figure 2a indicate the highly crystallized as-received Fe3O4 NPs. The lattice fringe d-spacing value (interplanar distance) of the as-received Fe3O4 NPs is about 0.29 nm, which corresponds to the (2 2 0) crystallographic plane (which examines the arrangement of atoms in solids) of Fe3O4.30 Figure 2b shows the microstructure of the Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 40 wt %, which consists of the crystalline Fe3O4 inside and the amorphous PPy polymer layer outside. The crystal structure of the Fe3O4/PPy PNCs with a Fe3O4 loading of 40 wt % is identified by the selected area electron diffraction (SAED), Figure 2c. The calculated d-spacing values of 2.94, 2.56, 2.08, 1.61, and 1.49 Å correspond to the (2 2 0), (3 1 1), (4 0 0), (4 2 2), and (4 4 0) crystallographic planes of Fe3O4.31 Figure S1 shows the acid dissolution of the as-received Fe3O4 NPs and the synthesized Fe3O4/PPy PNCs with a Fe3O4 loading of 60 wt %. The Fe3O4 NPs are observed to dissolve in the 1.0 mol L\(^{-1}\) hydrochloric acid (HCl) solution and the color changes to yellow. However, the Fe3O4/PPy PNCs are observed not to dissolve in the same acid solution, which indicates that Fe3O4 NPs have been successfully protected by the PPy matrix.

3.2. FT-IR Analysis. Figure 3 shows the FT-IR spectra of the as-received Fe3O4 NPs, pure PPy, and Fe3O4/PPy PNCs with different Fe3O4 nanoparticle loadings. For the as-received Fe3O4 NPs, Figure 3a, the peak around 529 cm\(^{-1}\) is due to the vibration of the Fe–O band.8 For the pure PPy, Figure 3b, the peaks located at 1521 and 1431 cm\(^{-1}\) are due to the C=C and C–N stretching vibration, respectively.2,6,7 The C–C vibration is reflected at a peak of 1132 cm\(^{-1}\).32 The peaks at 1276 and 1007 cm\(^{-1}\) are assigned to the C–H in-plane and out-of-plane deformation vibration, respectively.32 The small band located at 960 cm\(^{-1}\) is assigned to the C–O stretching vibration.32 These characteristic peaks have some shifts (about 7–16 cm\(^{-1}\)) compared with those of the pure PPy, indicating the interaction between the Fe3O4 NPs and the polymer matrix.3 These results indicate that the Fe3O4/PPy PNCs have been successfully synthesized.

3.3. Thermogravimetric Analysis. Figure 4 shows the TGA curves of the as-received Fe3O4 NPs, pure PPy, and Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 10, 20, 40, and 60 wt %.

Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 10, 20, 40, and 60 wt %. For the as-received Fe3O4 NPs, the weight has only a slight change within the measured temperature range from 35 to 700 °C.13 Two weight loss regions are observed in the TGA curves of pure PPy and its Fe3O4 NPs. The steady weight loss from 30 to 240 °C is due to the elimination of the moisture and dopant anions in the samples.6 The major weight loss of all the synthesized samples from 240 to 650 °C is due to the decomposition of PPy.7 The 10% weight loss decomposition temperature for the pure PPy and Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 10, 20, 40, and 60 wt % are 254, 257, 272, 287, and 300 °C, respectively. This result indicates that the thermal stability of the Fe3O4/PPy PNCs is improved by the addition of Fe3O4 NPs and increases with increasing Fe3O4 nanoparticle loading, which is also observed in the γ-Fe2O3/PPy PNCs system.2,6 Interestingly, it is found that the TGA curves of Fe3O4/PPy PNCs reach a plateau at a certain temperature. The temperature to reach the plateau decreases with increasing nanoparticle loading. The higher the nanoparticle loading, the lower the PPy weight percentage obtained, thus the PNCs with high nanoparticle loadings would reach the plateau at low temperature. At high temperature, the Fe3O4 NPs get oxidized to form hematite (α-Fe2O3).33 The weight residue of pure PPy at 700 °C is about 1.83 wt % arising from the carbonized PPy, which indicates that PPy cannot easily become completely decomposed in the air even at a...
higher temperature. The weight residue for the α-Fe₃O₄ is calculated to be 11.39, 25.28, 42.42, and 60.47 wt % for the Fe₃O₄/PPy PNCs with a Fe₃O₄ loading of 10, 20, 40, and 60 wt %, respectively. The weight percentage of Fe₃O₄ is calculated to be 11.01, 24.44, 41.01, and 58.45 wt %, respectively.

3.4. X-ray Diffraction Analysis. Figure 5 shows the XRD patterns of the as-received Fe₃O₄ NPs, pure PPy, and Fe₃O₄/PPy PNCs with different Fe₃O₄ nanoparticle loadings. Only a broad diffraction peak located at 2θ = 15.2°−27.9° is observed in the pure PPy. The diffraction peaks at 2θ = 18.0°, 30.3°, 35.6°, 43.3°, 54.0°, 57.2°, 62.9°, and 74.6° in the XRD curve of Fe₃O₄ NPs, Figure 5f, correspond to (1 1 1), (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), (4 4 0), and (5 3 3) crystallographic planes of the spinel phase of Fe₃O₄, respectively.51 The XRD patterns of the crystallite structure can be used to estimate the lattice plane d-spacing and average crystallite size.34 Generally, the lattice plane d-spacing is calculated based on the Bragg formula, eq 1:34

\[\lambda = 2d \sin \theta \]

where \(\lambda \) is the X-ray wavelength (\(\lambda = 0.154 \) nm) and \(\theta \) is the diffraction angle. The average crystallite size can be estimated by the XRD pattern, using the Scherrer formula, eq 2:

\[L = \frac{k\lambda}{\beta \cos \theta} \]

where \(\lambda = 0.154 \) nm, \(L \) is the average crystallite size, \(\beta \) is the full-width at half-maximum, and \(\theta \) is the diffraction angle; the shape factor \(k \), depending on the miller index of the reflection plane and the shape of the crystal, is normally 0.89. The peak of the as-received Fe₃O₄ NPs at 2θ = 35.6° is chosen to calculate the lattice plane d-spacing and average crystallite size. The obtained lattice plane d-spacing and average crystallite size of the as-received Fe₃O₄ NPs are 0.25 (which corresponds to the (3 1 1) crystallographic plane of Fe₃O₄) and 10.28 nm, respectively. The obtained average crystallite size (10.28 nm) of as-received Fe₃O₄ NPs is consistent with the results obtained in HRTEM (11.14 nm). The peak of the Fe₃O₄/PPy PNCs with a Fe₃O₄ nanoparticle loading of 60 wt % at 2θ = 35.6° are also chosen to calculate the lattice plane d-spacing and the average crystallite size. The calculated lattice plane d-spacing and average crystallite size of the Fe₃O₄/PPy PNCs with a Fe₃O₄ loading of 60 wt % are about 0.25 and 11.5 nm, respectively. Obviously, the Fe₃O₄/PPy PNCs have the diffraction peaks of the Fe₃O₄ NPs, Figure 5b−e, and the intensity of the peaks becomes stronger with increasing the Fe₃O₄ nanoparticle loading. However, the broad peak of pure PPy at 2θ = 15.2°−27.9° shows a reduced intensity with increasing the Fe₃O₄ nanoparticle loading, indicating a strong effect of the Fe₃O₄ NPs on the crystallization of PPy. This is also observed in the Fe₃O₄/PANI PNCs.8

3.5. Dielectric Properties. Figure 6 shows the real permittivity (\(\varepsilon' \)), imaginary permittivity (\(\varepsilon'' \)), and dielectric loss tangent (tan δ, where tan δ = \(\varepsilon''/\varepsilon' \)) as a function of frequency at room temperature for pure PPy and its Fe₃O₄ PNCs with a Fe₃O₄ nanoparticle loading of 10, 20, 40, and 60 wt %, respectively. In Figure 6a, the \(\varepsilon' \) for pure PPy and its Fe₃O₄ PNCs switches from negative to positive and increases with increasing the frequency from 10² to 10⁴ Hz. This frequency-dependent property is contributed to the interfacial polarization, where the charge carriers are accumulated at the internal interfaces arising from the Maxwell–Wagner–Sillars polarization effect (which occurs on a mesoscopic scale either at the inner dielectric boundary layers or at the external electrode–sample interface).35 The inset of Figure 6a shows the positive \(\varepsilon' \) value within the frequency range from 10⁴ to 2 x 10⁶ Hz. The decrease of \(\varepsilon' \) at high frequency is induced by the well-known dielectric relaxation phenomena, which is usually caused by the delay of molecular polarization in an external alternative electric field.36 The Fe₃O₄/PPy PNCs with a Fe₃O₄ nanoparticle loading of 60 wt % have the highest value of \(\varepsilon' \) compared with the Fe₃O₄/PPy PNCs with other loadings of Fe₃O₄ at high frequency (>2 x 10⁶ Hz), Figure 6a. Figure 6b shows the \(\varepsilon'' \) of pure PPy and its Fe₃O₄ PNCs with a Fe₃O₄ nanoparticle loading of 10, 20, 40, and 60 wt %, respectively. The \(\varepsilon'' \) of pure PPy shows the large negative values (about the order of −10⁹) and increases with increasing frequency at low frequency (<10³ Hz), then decreases monotonically after 10⁵ Hz. For the Fe₃O₄/PPy PNCs, the \(\varepsilon'' \) also shows a switch from negative to positive at certain frequency. The \(\varepsilon'' \) of the Fe₃O₄/PPy PNCs with a Fe₃O₄ nanoparticle loading of 10 and 20 wt % exhibits a similar trend as that of pure PPy. The \(\varepsilon'' \) value of the 40 wt % Fe₃O₄/PPy PNCs increases with increasing frequency from 10⁵ to 2 x 10⁶ Hz, and then decreases with increasing frequency (>2 x 10⁵ Hz). The \(\varepsilon'' \) of the Fe₃O₄/PPy PNCs with a Fe₃O₄ nanoparticle loading of 60 wt % also shows large negative values (about the order of −10⁹) and increases with increasing frequency from 10⁵ to 10⁷ Hz, and then decreases with increasing frequency (>10⁴ Hz). Generally, according to the Drude–Lorentz model, the dielectric permittivity of the conductive materials can be expressed as eq 3:

\[\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)} \]

where \(\omega_p \) is the plasma frequency, \(\gamma \) is the damping constant, and \(\omega \) is the angular frequency. When \(\omega < \omega_p \), the real permittivity \(\varepsilon' \) is negative; while \(\omega > \omega_p \), the \(\varepsilon' \) is positive.

Figure 6c shows the frequency-dependent tan δ for pure PPy and its Fe₃O₄ PNCs with a Fe₃O₄ nanoparticle loading of 10, 20, 40, and 60 wt %, respectively. The tan δ for all the samples increases from the frequency of 10² Hz and then reaches a peak value at different frequencies depending on the filler loading.
after that the tan δ decreases with increasing frequency. The appearance of the peak in the tan δ is due to the resonance effect, in which the system tends to oscillate with greater amplitude than others at certain frequencies, especially for the negative permittivity values.38 The tan δ is very low at high frequency (>10^5 Hz) for all the samples. The materials with a very low energy loss have a potential to be applied in the microelectronic devices.39

3.6. Optical Properties. Band gap, which is also called energy gap, \(E_g \), is the energy range between the conduction band and the valence band.40,41 The conduction band is the electron energy range for the electron to move freely within the atomic lattice of the materials, which is the first unfilled energy level at absolute zero temperature (called lowest unoccupied molecular orbital, LUMO, for molecules). The valence band is the highest energy range and the last filled energy level (highest occupied molecular orbital, HOMO, for molecules).42 In the inorganic materials, as the exciton binding energy \(E_t - E_g^{opt} \) (the difference between \(E_t \) and \(E_g^{opt} \), \(E_g^{opt} \) is the optical band gap) is very small, the \(E_t \) is very close to \(E_g^{opt} \). In the organic materials, the exciton binding energy is larger than that in the inorganic materials, therefore, \(E_t \) is larger than \(E_g^{opt} \). The exciton binding energy can be measured by inverse photoelectron spectroscopy (IPES) and ultraviolet photoelectron spectroscopy (UPS).43 In this work, the UV–vis DRS is used to measure the UV–vis absorption edge (\(\lambda_{edge} \)) of all the samples. \(\lambda_{edge} \) means the transition between the strong short-wavelength and the weak long-wavelength absorption in the spectrum of a solid sample.44 The optical band gap energy can be obtained according to eq 4, which is based on the onset of the UV–vis absorption and the number 1240 is obtained from the relationship between frequency and wavelength as described by eq 5:

\[
E_g^{opt} = 1240/\lambda_{edge}\nm
\]

(4) where \(E_g^{opt} \) is the optical band gap that can be used to analyze the optical absorption and the number 1240 is obtained from the onset of the UV–vis DRS of the powdered materials:45,46

\[
E(\text{eV}) = h\nu = \frac{hc}{\lambda}
\]

(5) where \(h \) is Planck’s constant, \(c \) is about \(3 \times 10^8 \) m s\(^{-1}\), the speed of light in the vacuum, \(e \) is the electron charge, the unit of \(\lambda \) is meter (m), then 1240 can be obtained from \(hc/e \).

It is reported that the dopant has a significant effect on the band gap of PPy. The band gap of the undoped PPy differs from that of the doped PPy47 and different dopants can make the band gap of PPy different.48 Figure 7 shows the UV–vis DRS of pure PPy and Fe\(_3\)O\(_4\)/PPy PNCs with a Fe\(_3\)O\(_4\) nanoparticle loading of 10, 20, 40, and 60 wt %. The \(\lambda_{edge} \) and \(E_g^{opt} \) of the Fe\(_3\)O\(_4\)/PPy PNCs with a Fe\(_3\)O\(_4\) nanoparticle loading of 10, 20, 40, and 60 wt %.

Figure 7. UV–vis DRS of pure PPy and Fe\(_3\)O\(_4\)/PPy PNCs with a Fe\(_3\)O\(_4\) nanoparticle loading of 10, 20, 40, and 60 wt %.

\[\lambda_{edge} \] and \(E_g^{opt} \) of the Fe\(_3\)O\(_4\)/PPy PNCs with a Fe\(_3\)O\(_4\) nanoparticle loading of 10, 20, 40, and 60 wt %.

\[\lambda_{edge} \] and \(E_g^{opt} \) of the Fe\(_3\)O\(_4\)/PPy PNCs with a Fe\(_3\)O\(_4\) nanoparticle loading of 10, 20, 40, and 60 wt %.

\[\lambda_{edge} \] and \(E_g^{opt} \) of the Fe\(_3\)O\(_4\)/PPy PNCs with a Fe\(_3\)O\(_4\) nanoparticle loading of 10, 20, 40, and 60 wt %.
PPy nanocomposites with different nanoparticle loadings are listed in Table 1. From Table 1, it is obtained that the addition of Fe3O4 NPs into the PPy matrix is observed to have little effect on the E^pp of PPy.

3.7. Magnetic Properties. Magnetization is a phenomenon that describes the response of magnetic materials to an applied external magnetic field. Application of a magnetic field can make the direction of magnetic moment of the NPs the same as the field direction, and the magnetization increases with increasing magnetic field until it reaches the saturation magnetization (M_s). When the diameter of the magnetic NPs is around 10 nm, according to the materials, the coercive force (H_c) reaches zero, then the NPs will be in the super-paramagnetic state. The magnetic properties of a super-paramagnetic system can be described on the basis of the Langevin eq 6:52

$$M = \int_0^\infty L\left(\frac{mH}{k_B T}\right)f(m) \, dm \tag{6}$$

where M is magnetization (emu g^{-1}) in H (Oe), k_B is the Boltzmann constant, m is the magnetic moment, T is the absolute temperature, and $f(m)$ is the distribution function of magnetic moments related to the saturation magnetization (M_s) as described by eq 7:

$$M_s = \int_0^\infty f(m) \, dm \tag{7}$$

According to eq 6 and 7, the relationship between M and M_s can be described by eq 8:

$$\frac{M}{M_s} = \coth x - \frac{1}{x} \tag{8}$$

where, $x = aH/I$; the parameter a is related to the electron spin magnetic moment m of the individual molecule as described in eq 9:

$$a = \frac{m}{k_B T} \tag{9}$$

Figure 8 shows the magnetization curves of the as-received Fe3O4 NPs, pure PPy, and Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 10, 20, 40, and 60 wt % at room temperature, respectively. All the samples show no hysteresis loop, which means that the H_c is zero Oe, indicating a superparamagnetic behavior.53 The magnetization of all the samples did not reach saturation at the measured magnetic field. Thus, the M_s is determined by the extrapolated M_s obtained from the intercept of $M=H^{-1}$ at high magnetic field.54 The M_s of the as-received Fe3O4 NPs is 63.45 emu g$^{-1}$, which is smaller than that of the bulk Fe3O4 (92 emu g$^{-1}$).55 The obtained M_s values of Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 10, 20, 40, and 60 wt % are 7.32, 15.7, 28.81, and 43.11 emu g$^{-1}$, respectively.

The best fit to eq 8 is obtained by nonlinear fitting of M and H_c using Polymath software. The a for the as-received Fe3O4 NPs and Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 10, 20, 40, and 60 wt % is 3.24×10^{-3}, 3.20×10^{-3}, 3.28×10^{-3}, 3.22×10^{-3}, and 3.31×10^{-3} T^{-1}, respectively. According to eq 9, the magnetic moment m can be calculated from a. The m of the pure PPy and Fe3O4/PPy PNCs with a Fe3O4 nanoparticle loading of 10, 20, 40, and 60 wt % is 1.40, 1.38, 1.42, 1.39, and 1.43 μ_B, respectively. The m is almost the same for all the samples, indicating that the polymer has little effect on the magnetic moment of the Fe3O4 NPs.

3.8. Temperature-Dependent Resistivity and Electrical Conduction Mechanism. The temperature-dependent resistivity of pure PPy and its Fe3O4 PNCs with different Fe3O4 nanoparticle loadings is measured at temperatures ranging from 100 to 290 K to determine the electrical conduction mechanism. In Figure 9a, the resistivity of all the synthesized samples decreases with increasing temperature, which is a typical behavior of the semiconductor.6 The resistivity of pure PPy decreases from 4.60 to 1.58 ohm-cm within the measured temperature scale. The resistivity of the Fe3O4/PPy PNCs with different Fe3O4 nanoparticle loadings varies from 2.13 to 30.01 ohm-cm within the temperature scale 100–290 K. The Fe3O4/PPy PNCs exhibit higher resistivity than that of pure PPy over the whole temperature range and the resistivity of the Fe3O4/PPy PNCs increases with increasing the Fe3O4 nanoparticle loading.

To better understand the charge transport in pure PPy and its Fe3O4 PNCs, the Mott variable range hopping (VRH) model, eq 10, is used to describe the electrical conduction mechanism:2,7,23

$$\sigma = \sigma_0 \exp \left[-\left(\frac{T_0}{T}\right)^{1+\bar{n}}\right] \tag{10}$$

where the pre-exponential factor σ_0 is a constant, which represents the conductivity at infinite low temperature limit.
The Journal of Physical Chemistry C

Figure 9. (a) Resistivity vs temperature and (b) ln $\sigma - T^{-1/4}$ curves of pure PPY and Fe$_3$O$_4$/PPy PNCs with a Fe$_3$O$_4$ nanoparticle loading of 10, 20, 40, and 60 wt %.

The n value of 3, 2, and 1 is for three-, two-, and one-dimensional systems, respectively. T is the Kelvin temperature (K) and T_0 is the characteristic Mott temperature (K) and is expressed as eq 11:

$$T_0 = 24/(k_B N(E_F)a_0^3)$$

(11)

where k_B is Boltzmann constant, the $N(E_F)$ is the density of states at the Fermi level, and a_0 is the localization length of the localized wave function of charge carriers.57 Equation 10 can be rearranged to the following eq 12:

$$\ln \sigma = \ln \sigma_0 - \left(\frac{T_0}{T}\right)^{1/n}$$

(12)

Thus, σ_0 and T_0 can be calculated from the intercept and slope of the plot $\ln \sigma - T^{-1/4}$, respectively. The obtained results from temperature-dependent resistivity, Figure 9a, are shown in Figure 9b. Both pure PPY and the Fe$_3$O$_4$/PPy PNCs are observed to follow the $\ln \sigma - T^{-1/4}$ linear relationship, which indicates a quasi-3-dimensional VRH mechanism. The σ_0 and T_0 obtained from Figure 9b are summarized in Table 2. Generally, a larger T_0 indicates a stronger localization of the charge carriers, which is usually accompanied by an increased resistivity.58 A smaller T_0 indicates a weak localization.59 The T_0 of the Fe$_3$O$_4$/PPy PNCs is higher than that of pure PPY, which means that the resistivity increases after adding the Fe$_3$O$_4$ NPs. Interestingly, it is observed that the optical band gap E_g^{opt} of the pure PPY and Fe$_3$O$_4$/PPy PNCs with a nanoparticle loading of 10, 20, and 40 wt % have the same trend with the T_0, which confirms that the band gap determines both the electrical and optical properties of the semiconducting polymers.60 As the Fe$_3$O$_4$ loading increases to 60 wt %, the E_g^{opt} increases while the T_0 decreases, which may be due to the continuous phase change in the PNCs. In the conjugated polymers, the disorder means the result of variations in conjugation length, rotations, and kinking of polymer chain interactions with neighboring conjugated molecules, impurities, and dipoles from residual solvent molecules.61 In this work, the disorder is expressed by the resistivity ratio (ρ_I/ρ_0) for the pure PPY and its PNCs. The calculated ρ_I of pure PPY and its PNCs is also listed in Table 2. From Table 2, it is observed that the value of T_0 changes along with the change of ρ_I, indicating that the T_0 depends on the ρ_I (disorder).

3.9. Magnetoresistance. The MR can be calculated using eq 13:

$$\text{MR} = \frac{R(H) - R(0)}{R(0)} \times 100$$

(13)

where $R(0)$ is the resistance without magnetic field and $R(H)$ is the resistance under the magnetic field. In this work, the MR in pure PPY and its Fe$_3$O$_4$ PNCs is studied. The room temperature MR values of pure PPY and its Fe$_3$O$_4$ PNCs with a Fe$_3$O$_4$ nanoparticle loading of 60 wt % are displayed in Figure 10. The MR of the pure PPY shows a positive value within the measured magnetic field range from 0 to 9 T and magnetic field dependent property. This positive MR value for pure PPY is very low and the highest MR value is only about 0.38%. However, the MR of the Fe$_3$O$_4$/PPy PNCs with a Fe$_3$O$_4$ nanoparticle loading of 60 wt % shows a negative value in the

Table 2. T_0, σ_0, and ρ_I for the Pure PPY and Fe$_3$O$_4$/PPy PNCs with a Fe$_3$O$_4$ Nanoparticle Loading of 10, 20, 40, and 60 wt %

<table>
<thead>
<tr>
<th>samples</th>
<th>$T_0 \times 10^4$ (K)</th>
<th>σ_0 (S cm$^{-1}$)</th>
<th>ρ_I</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure PPY</td>
<td>4.46 ± 0.06</td>
<td>21.14 ± 0.29</td>
<td>2.89</td>
</tr>
<tr>
<td>10 wt % Fe$_3$O$_4$/PPy</td>
<td>10.1 ± 0.08</td>
<td>36.65 ± 0.36</td>
<td>3.43</td>
</tr>
<tr>
<td>20 wt % Fe$_3$O$_4$/PPy</td>
<td>6.07 ± 0.07</td>
<td>19.20 ± 0.23</td>
<td>3.15</td>
</tr>
<tr>
<td>40 wt % Fe$_3$O$_4$/PPy</td>
<td>12.46 ± 0.11</td>
<td>31.65 ± 0.36</td>
<td>3.95</td>
</tr>
<tr>
<td>60 wt % Fe$_3$O$_4$/PPy</td>
<td>9.92 ± 0.12</td>
<td>8.88 ± 0.13</td>
<td>3.39</td>
</tr>
</tbody>
</table>

Figure 10. Magnetoresistance of pure PPY and Fe$_3$O$_4$/PPy PNCs with a Fe$_3$O$_4$ nanoparticle loading of 60 wt %.
measured magnetic field range and decreases with the increasing magnetic field. The negative MR is also observed in the Fe₃O₄/PPy PNCs with Fe₃O₄ nanoparticle loadings of 10, 20, and 40 wt %, respectively.

Generally, the orbital magnetoconductivity theory (forword interference model) and wave function shrinkage model can be used to describe the MR of highly disorderedly localized systems in the VRH regime. In the temperature-dependent resistivity section, the pure PPy and Fe₃O₄/PPy PNCs exhibit the quasi-3-d Mott VRH electrical conduction mechanism. Therefore, these two models can be applied to the pure PPy and 60 wt % Fe₃O₄/PPy PNCs. The wave function shrinkage model is used to describe the positive MR effect of the pure PPy. In the wave function shrinkage model, the $R(H,T)/R(0,T)$ can be expressed as eq 14:

$$R(H, T)/R(0, T) = \exp\left[\xi_{fi}(0)\frac{\xi(H)}{\xi(0)} - 1\right]$$

where $\xi_{fi}(0) = \left(\frac{T_0}{T}\right)^{1/4}$ is the 3-d Mott VRH charge transport mechanism, $\xi_{fi}(H)/\xi(0)$ is the normalized hopping probability parameter and is a function of H/P_C for the Mott VRH charge transport mechanism, H is the magnetic field, and P_C is the fitting parameter, which is the normalizing characteristic field that must be extracted from one set of MR ratio data points and can also be given by eq 15 for the Mott VRH charge transport mechanism:60,64-65

$$P_C = 6\hbar/\left(3e^2(T_0/T)^{3/4}\right)$$

where e is electron charge, and \hbar is the reduced Planck’s constant. In the low magnetic field limit, eq 14 is simplified to eq 16:

$$R(H, T)/R(0, T) \approx 1 + t_2\frac{H^2}{P_C T}$$

And MR is defined as eq 17:

$$\frac{MR}{R(0, T)} = \frac{R(H, T) - R(0, T)}{R(0, T)} \approx t_2\frac{H^2}{P_C T}$$

where the numerical constant $t_2 = 5/206$. From eq 17, it is found that the MR value obtained from the wave function shrinkage model will always be positive, hence it is used to explain the positive MR value. According to eq 17, the localization length a_0 can be expressed from the slope of the curve by plotting $MR - H^2$ ($a_0^4 = \left(36\hbar^2/\left(t_2e^2\right)\right)(T_0/T)^{3/4}/H^2$), Figure S2. In Figure S2, the slope of the curve $MR - H^2$ for the pure PPy is decreased with increasing H, which means that the localization length a_0 is reduced with increasing H. The a_0 can also be calculated from eq 18:

$$a_0^4 = \frac{36\hbar^2/\left(t_2e^2\right)\left(T_0/T\right)^{3/4}}{H^2}$$

The a_0 is $130.60 \pm 0.97 \times 10^{-6}$, $42.67 \pm 0.03 \times 10^{-6}$, and $28.07 \pm 0.02 \times 10^{-6}$ nm at H of 0.3, 4, and 8.5 T, respectively. From the obtained results, the a_0 is observed to decrease with increasing H, which is consistent with results in Figure S2.

Thus, the density of states at the Fermi level $N(E_F)$ can be calculated from eq 19 according to eq 11:

$$N(E_F) = \frac{24}{\pi k_B T_0 a_0^3}$$

The obtained $N(E_F)$ is $1.12 \times 10^{14} \pm 1.50 \times 10^{13}$, 1.60×10^{13}, 2.16×10^{13}, and $5.61 \times 10^{13} \pm 7.54 \times 10^{13}$ (J cm⁻¹) at a_0 of $130.60, 42.67$, and 28.07 nm, respectively. The calculated $N(E_F)$ increases with decreasing a_0. Generally, the hopping probability between the localized states increases with increasing $N(E_F)$, indicating that the higher $N(E_F)$, the more hopping probability of charge carriers. The average hopping length R_{hop} can be obtained from eq 20 by R_{hop}, T, and a_0:66

$$R_{hop} = \left(3/8\right)(T_0/T)^{1/4}$$

The obtained R_{hop} is $1.72 \times 10^2 \pm 0.58, 0.56 \times 10^2 \pm 0.19$, and $0.37 \times 10^2 \pm 0.12$ nm at a_0 of $130.60, 42.67$, and 28.07 nm, respectively. These results indicate that the R_{hop} decreases with increasing H and the increased MR accompanies with the reduced R_{hop}.

The orbital magnetoconductivity theory is used to investigate the negative MR effect of the Fe₃O₄/PPy PNCs. The effect of interference among various hopping paths was concerned in this theory. These hopping paths include a sequence of scattering of tunneling electrons by the impurities located within a cigar-shaped domain of length n_h (hopping distance) and width (a_0/a_h). The ratio $R(H,T)/R(0,T)$ caused by interference effects is described by empirical eq 21:

$$R(H, T)/R(0, T) \approx 1 + C_{sat}(H/H_{sat})/\left[1 + H/H_{sat}\right]$$

where the fitting parameter C_{sat} is constant and also called the temperature-independent fitting parameter and H_{sat} is called the effective saturation magnetic field. As for the Mott VRH electrical conduction mechanism, H_{sat} is calculated by eq 22,63,66,69

$$H_{sat} \approx 0.7 \left[\frac{8}{3}\left(\frac{1}{a_0}\right)^{3/2}\left(\frac{\hbar}{T_{0}}\right)^{3/8}\right]$$

where h is the Planck’s constant, and T_0 is the Mott characteristic temperature (K). In the low-field limit, eq 21 can be simplified to eq 23:

$$R(H, T)/R(0, T) \approx 1 - C_{sat}(H/H_{sat})$$

Substituting eq 22 into eq 23 and rearranging, the MR can be obtained from eq 24:

$$MR = \frac{R(H, T) - R(0, T)}{R(0, T)} \approx -C_{sat}(H/H_{sat})$$

$$= -C_{sat} \left[0.7 \left(\frac{8}{3}\right)^{3/2}\left(\frac{1}{a_0}\right)^{3/2}\left(\frac{\hbar}{T_{0}}\right)^{3/8}\right]$$

The calculated a_0 are 0.440, 0.169, and 0.129 µm at H of 0.3, 4, and 8.5 T, respectively. The obtained a_0 for the negative MR value is larger than that of the positive MR value, which is also observed in the carbon nanotube (CNT) films, mat, and pellets at weak magnetic field and interpreted by the quantum interference effect.70
4. CONCLUSIONS
The conductive PPy PNCs with different Fe3O4 nanoparticle loadings have been successfully synthesized by using a facile SIP method. The addition of Fe3O4 NPs can enhance the thermal stability of the PPy polymer analyzed by TGA. XRD results indicate that the presence of Fe3O4 NPs has significant effects on the crystallization of the PPy. The results from SEM and HRTEM show that the Fe3O4 NPs have been embedded in the PPy matrix. The permittivity switching from negative to positive at certain frequency is observed in the fabricated PPy and Fe3O4/PPy PNCs. The optical properties of Fe3O4/PPy PNCs indicate that the adding of Fe3O4 NPs into the PPy has little effect on the ε_{∞} of PPy. The synthesized Fe3O4/PPy PNCs show no hysteresis loop, indicating the superparamagnetic behavior. The resistivity of pure PPy and Fe3O4/PPy PNCs decreases with increasing temperature, exhibiting semiconducting behavior. The Mott VRH model is introduced to evaluate the electrical conduction mechanism of these synthesized PPy and its PNCs and the results indicate a quasi-3-d VRH mechanism. The pure PPy shows a positive MR, which is explained based on the wave function shrinkage model, and the Fe3O4/PPy PNCs shows a negative MR, which is explained based on the orbital magnetocconductivity theory.

ASSOCIATED CONTENT
Supporting Information
The dissolution of the Fe3O4 NPs and 60 wt % Fe3O4/PPy in the 1 mol L−1 HCl solution, the MR−H^2 curve, and the calculation method of the localization length a_0 from orbital magnetocconductivity theory. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION
Corresponding Author
*E-mail: zhanhu.guo@lamar.edu (Z.G.); suying.wei@lamar.edu (S.W.). Tel.: (409) 880-7654 (Z.G.); (409) 880-7976 (S.W.). Fax: (409) 880-2197 (Z.G.); (409) 880-8270 (S.W.).

Author Contributions
¶These authors are contributed equally in this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This project is financially supported by Research Enhanced Grant (REG) of Lamar University. Partial support from National Science Foundation (NSF) Nanoscale Interdisciplinary Research Team, and Materials Processing and Manufacturing (CMMI 10-30755) is appreciated. D.P.Y. acknowledges the support from the NSF under Grant No. DMR 10-05764. H.G. acknowledges the support from China Scholarship Council (CSC) program.

REFERENCES

■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published on the Web on May 6, 2013. A revision was made in the Results and Discussion section. The revised version was reposted May 8, 2013.