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A series of TiO2/ZrO2 composites with various molar ratios of ZrO2:TiO2 were synthesized by a facile and
mild microwave hydrothermal method with carboxymethyl chitosan (CMCS) as templates. The as-
obtained products were characterized with wide-angle powder X-ray diffraction (XRD), scanning electron
microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy
(FTIR), UV–vis diffuse reflectance spectrophotometry (UV–vis-DRS), N2 adsorption-desorption isotherms
(BET), and X-ray photoelectron spectrometer (XPS). The TiO2/ZrO2 composites with heterogeneous struc-
ture consisted of particles which showed a better regularity and uniform with about 800 nm in diameter,
and showed a larger specific surface area and smaller energy band gap than pure ZrO2. Comparative
experiments including varying the pH of the solution and the content of titania demonstrated that the
5% TiO2/ZrO2 composites (nTi:nZr = 5:100) at pH = 10.3 possessed the best photocatalytic property.
Moreover, the possible reasons for these phenomena were clarified. Cyclic experiments proved that
the resulting TiO2/ZrO2 composites as photocatalyst could be reused efficiently. Meanwhile, a possible
mechanism of photocatalysis was proposed.
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1. Introduction

With the rapid development in textile, leather, food and paper
industries, dye contaminants of various water resources have
caused great concerns because of their toxicity, carcinogenicity
and mutagenicity [1]. Therefore, it is essential that dye stuffs are
removed from wastewater before they are released [2–4]. An effec-
tive approach to eliminate effects of dye to the human race and
nature is achieved by decomposing dye stuffs into organic mole-
cules which are harmless to human health and nature with appro-
priate catalysts under the sunlight or UV-light [5–11].

Chitosan (CS) is one of linear copolymers of b(1–4) linked 2-
acetamido-2deoxy-b-D-glucopyranose and 2-amino-2-deoxy-b-D-
glycopyranose [12]. The high content of amino and hydroxyl func-
tional groups, acting as coordination sites to form complexes,
endows chitosan the highest metal coordinating ability among
the natural polymers, which makes it possible for chitosan to be
used as an appropriate adsorbent and bio-template [13–15]. For
instance, Jiang et al. synthesized mesoporous titania spheres using
chitosan/ploy as template to decompose phenol in the water [16].
Meanwhile, chitin, the source of chitosan, can be widely obtained
from crustaceans, insect, and certain fungi, of which output esti-
mated to be several billion tons per year [17–19]. Thus, chitosan
is considered as a non-toxic and easily available biocompatible
biopolymer in nature [20]. However, the wide application of chi-
tosan is restricted owing to poor chemical stability and low
mechanical strength [21]. In order to solve these problems, an
approach to modify chitosan is normally applied. For example,
Fan et al. prepared a cross-linked magnetic chitosan with a higher
performance of Zn2+ adsorption from aqueous solution [13]. In the
reported studies, carboxymethyl chitosan (CMCS) was obtained by
modifying CS with monochloro acetic acids, which contain more
carboxyl, amino and hydroxyl functional groups. Compared to CS,
CMCS not only can be applied in wider pH ranges of water since
its higher stability, but also has a higher hydrophilicity [22]. The
larger specific surface area, a multitude of functional groups and
higher hydrophilicity of CMCS are expected to play an essential
role in more efficiently coordinating with mental oxide and floccu-
late sol [23].

N-type semiconductor zirconia (ZrO2) is commonly applied as
catalysts, catalyst supports, dielectric material, chemical sensors
and photocatalytic material due to its chemical inertness, excellent
thermal stability, nontoxicity, re-usability and low cost [24–31].
On the other hand, pure ZrO2 only absorbs 4% of solar light owing
to poor specific surface area and higher energy band gap which are
considered to be primary reasons to reduce effective electron
transfer and charge separation, thus its large scale applications as
photocatalysts have been greatly limited [32]. Many efforts to
improve light response of semiconductor materials have been
reported, such as metal ion and non-metal ion doping, semicon-
ductor doping, dye sensitization, preparation of composites [33–
36]. Among all the reported methods, metal ion and non-metal
ion doping were considered as the most effective way to modify
the properties of ZrO2 [36]. For example, Renuka et al. synthesized
multi-functional ZrO2/CuO nanocomposites by a simple combus-
tion, which showed outstanding photocatalytic properties under
sunlight [37]. In addition, some methods to significantly enhance
the specific surface area of materials have been developed by using
microorganisms, biological and inorganic salt as templates to pre-
pare various novel materials [38–40]. For instance, Zhao et al.
reported ZrO2 hollow microspheres by adopting pollen templates
to remove dye from solution [41]. Fan et al. synthesized meso-
porous TiO2/ZrO2 nanocomposites by sol-gel method with Pluronic
and Macrogo 20000 as double templates to decompose the Rho-
damine B in water [42]. Although the synthesis and photocatalytic
performance of TiO2/ZrO2 composites have been reported, the
preparation of TiO2/ZrO2 composites with high photoelectrocat-
alytic performance by the microwave solvothermal method has
note been reported yet.

In this work, TiO2/ZrO2-CMCS (CMCS was acted as template)
composites were successfully prepared through a facile and mild
microwave solvothermal method in an hour which was obviously
shorter than that of conventional solvothermal method. The TiO2/
ZrO2 composites obtained after calcination of TiO2/ZrO2-CMCS in
the air presented better dispersity and uniform morphology. The
photocatalytic performance of the samples was tested by measur-
ing the degradation of the Rhodamine B (Rh B) aqueous solution
under UV-light and the effects of the pH of the solution and the
content of titania in composites on the photocatalystic efficiency
were investigated. The mechanism for the enhanced photocata-
lystic efficiency was discussed in details.
2. Experimental

2.1. Preparation of CMCS

The CMCS was prepared as follows. In a typical procedure, 2.0 g
NaOH solution (50 wt%) was added into 3.0 g chitosan and alkali-
fied for 30 min. Afterward, 15.0 g monochloro acetic acid was
added into the above mixture and stirred in a water bath at 90C
for 30 min. The schematic diagram of the chemical reaction was
depicted in Scheme 1. The pH of final mixture was adjusted to 7
by adding glacial acetic acid dropwise. The mixture was washed
with distilled water and absolute ethanol several times. The CMCS
was obtained and dried at 50 �C in the air.

2.2. Synthesis of TiO2/ZrO2 composites

Preparation of 2% TiO2/ZrO2 (nTi:nZr = 2:100) is as followed.
3.0 g CMCS was dispersed into 20 mL anhydrous ethanol and stir-
red for 3 h to obtain an anhydrous suspension of CMCS. 2.93 g N-
butanol zirconium and 0.052 g butyl titanate were added dropwise
into the above mixture under stirring constantly and then ultra-
sonically dispersed for 10 min. 0.5 mL distilled water was added
dropwise into the above mixture and ultrasonically dispersed for
10 min. The mixture was transferred to microwave hydrothermal
synthesis system and heated to 150 �C with a heating rate of 5 �-
C min�1, then maintained at 150 �C for 30 min. The precipitate
was collected by centrifugation, washed by deionized water and
ethanol for three times, and dried at 50 �C in air. Then, the as-
obtained sample was calcined at 600 �C in air for 3 h at a heating
rate of 5 �C min�1, and 2% TiO2/ZrO2 composites were obtained.
Besides, other samples could be obtained with the same proce-
dures by changing the mass of butyl titanate (0, 0.104, 0.13,
0.156, 0.208 g). Pure ZrO2 (pure TiO2) was prepared by the same
procedures in the absence of butyl titanate (N-butanol zirconium)
and templates. Meanwhile, the samples mentioned above were
labelled and the details were listed in Table 1. For instance, T/Z-
CMCS-5 represented the composites prepared by adding N-
butanol zirconium and butyl titanate (nTi:nZr = 5:100) in the pres-
ence of CMCS as templates. T/Z-5 represented 5% TiO2/ZrO2

(nTi:nZr = 5:100) composites obtained by calcining T/Z-CMCS-5 at
600 �C.

2.3. Characterization

SEM images of the composites were taken with a field emission
scanning electron microscopy (SEM, S-4800, Hitachi, Japan).
Transmission electron microscope (TEM, FEI Talos F200S, Czech)
was used to investigate the crystallize size and lattice plane
D-spacing. X-ray power diffraction (XRD) patterns of the



Scheme 1. Schematic diagram of chemical reaction of chitosan modified with carboxylic groups.

Table 1
Information of different samples.

CS as templates
(g)

CMCS as templates
(g)

aN-butanol zirconium
(g)

aButyl titanate
(g)

bnTi
nZr

(%)

cAbbreviation before
calcination

cAbbreviation after
calcination

3.0 / 2.93 0.13 5 T/Z-CS-5 T/Z-S-5
0 0 0 2.60 100 Pure-T P/T
0 0 2.93 0 0 Pure-Z P/Z
/ 3.0 2.93 0 0 T/Z-CMCS-0 T/Z-0
/ 3.0 2.93 0.052 2 T/Z-CMCS-2 T/Z-2
/ 3.0 2.93 0.104 4 T/Z-CMCS-4 T/Z-4
/ 3.0 2.93 0.130 5 T/Z-CMCS-5 T/Z-5
/ 3.0 2.93 0.156 6 T/Z-CMCS-6 T/Z-6
/ 3.0 2.93 0.208 8 T/Z-CMCS-8 T/Z-8
/ 3.0 0 2.60 100 T/Z-CMCS-100 T/Z-100

a The mass of chemical reagents added to prepared different samples.
b The molar ratio of Zr and Ti element in the added ester.
c Abbreviation of different composites.
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as-prepared samples were acquired by a Rigaku D/Max 2400X-ray
diffractometer (XRD, ultima IV, Rigaku, Japan) with graphite
monochromatized Cu Ka radiation (30 kV, 100 mA). FTIR spectra
were recorded from KBr pellets on a NACOLET 380 FT-IR spectrom-
eter (Nicolet Thermo, USA). The diffuse reflectance UV–visible
spectrum of sample was recorded on a UV-2550 UV–visible spec-
trophotometer (UV–Vis DRS Hitachi, UH4150, Japan). Thermal sta-
bility was studied by a thermogravimetric analyser (TGA, NETZSCH
STA 449F3, Japan) at heating rate of 10 �C min�1 in air atmosphere
from 298 to 1073 K. The BET determinations were carried by using
BELSORP-Mini II apparatus (Microtrac Bel Co. Ltd, Japan) and the
pore size distribution was obtained based on Barrett-joyner-
Halenda (BJH). Elemental composition information of samples
were done by an ESCALAB 250Xi X-ray photoelecton spectrometer
(XPS, Thermo Scientific, USA) with a monochromatic Al K-Alpha
radiation (150 W, 15 KV, and 1486 eV).
Fig. 1. XRD patterns of (a) composites after calcination, (b) the (1 0 1) plane of
composites intercepted from (a), and (c) the T/Z-CMCS-5.
2.4. Photocatalytic experiments

50.0 mg as-obtained samples were added into 100.0 mL Rh B
aqueous solution (10 mg L�1, pH = 8.0). The mixture reaching
adsorption equilibrium after treating in the dark for 60 min was
transferred to the photochemical reactor under irradiation of UV-
light (CEL-LPH120). The pH of Rh B aqueous solution was adjusted
by 0.1 mol L�1 HCl aqueous solution and 0.1 mol L�1 NaOH aque-
ous solution. At regular intervals, the absorbance of a certain
amount of solution was measured by UH-4150 UV–visible absorp-
tion spectrophotometer at maximum absorption wavelength of Rh
B (554 nm).
3. Results and discussion

3.1. Characterizations of the photocatalysts

The XRD patterns of the as-obtained samples are shown in
Fig. 1. In Fig. 1a, all the diffraction patterns of TiO2/ZrO2 composites
with different contents of TiO2 show peaks at 30.50, 35.65, 50.72,
60.11 and 63.88�, which can be assigned to the (1 1 1), (2 0 0),
(2 2 0), (3 1 1) and (2 2 2) crystal planes of the tetragonal ZrO2

(JCDPS # 50-1089), respectively. Comparing the XRD patterns of
T/Z composites with that of P/Z, there are no additional peaks
occurring, demonstrating that T/Z composites are of high purity
and good crystallinity. The reason of no significant peaks assigned
to the titanium oxide may be attributed to the low content of TiO2

in the composites [43]. Fig. 1b shows the (1 1 1) diffraction peaks
of TiO2/ZrO2 composites. As the content of TiO2 in TiO2/ZrO2 com-
posites increases, the (1 1 1) diffraction peaks shift to a lower
angle, which can be attributed to the recombination of TiO2 into
ZrO2 [44]. Further, the average crystallite size can be calculated
by Debye-Scherrer Equation [37] and the results are depicted in
Table 2. It can be seen that the TiO2/ZrO2 composites with different



Table 2
The average crystallite size of samples.

Samples T/Z-0 T/Z-2 T/Z-4 T/Z-5 T/Z-6 T/Z-8

Average crystallite size (nm) 10.5 10.7 11.3 12.7 10.5 10.2
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content of TiO2 show various average crystallite size, which may be
attributed to different nuclei and coordination geometry of ZrO2

and TiO2 [45]. Since the XRD patterns of T/Z-CMCS with different
contents of TiO2 are analogous, the XRD pattern of T/Z-CMCS-5
(Fig. 1c) is shown as a representative. The broad diffraction bands
of T/Z-CMCS-5 composite reveal that the sample before calcination
is amorphous.

XPS measurement is carried out to investigate the surface com-
position of T/Z-5 and the results are listed in Fig. 2. Three peaks
appearing on Fig. 2a correspond to titanium (2p), oxygen (1s),
and zirconium (3d) states, respectively. The twin peaks in Fig. 2b
of Zr 3d with the binding energies at 182.1 and 184.3 eV corre-
spond to the Zr 3d3/2 and Zr 3d5/2 chemical states, respectively,
which indicate zirconium in the +4 oxidation states and the pres-
ence of ZrAO [46]. In addition, there are two peaks at 181.7 and
184.8 eV, suggesting the existence of ZrATi chemical bonds in
the composites [47]. The Ti 2p peaks in Fig. 2c located at
458.6 eV and 464.4 eV correspond to Ti 2p1/2 and Ti 2p3/2 chemical
states, respectively. The peaks of Ti verify the existence of Ti4+ oxi-
dation state in the composite and the presence of TiAO. Mean-
while, there is an inconspicuous peak at 465.0 eV, which can be
attributed to the ZrATi chemical bonds [48]. The existence of ZrAO,
TiAO and ZrATi chemical bonds indicates the phase contact
between TiO2 and ZrO2. It can be observed in Fig. 2d that the O
1s binding energy appears at 530.0 eV, which is a proof of presence
of crystal lattice oxygen (O2�) [49]. The mole ratio of TiO2 to ZrO2

in T/Z-5 is estimated to be about 4.7% based on the peak area on
the XPS spectra (Fig. 2b and d), which is close to the theoretical
value (5%).
Fig. 2. XPS full survey spectrum of T/Z-5 (a), the XPS s
The morphologies of T/Z-CMCS-5 and T/Z-5 composites were
imaged by SEM. It can be clearly seen from Fig. 3b that the agglom-
erated particles of T/Z-CMCS-5 show an average diameter of 800–
900 nm and the morphology of sample is similar to the coral rock.
Fig. 3d–f shows the images of T/Z-5 at different magnifications.
Compared with T/Z-CMCS-5 in Fig. 3a, the morphology of T/Z-5
in Fig. 3d and e has no significant change. Meanwhile, the rough-
ness degree of the sample surface after calcination (Fig. 3f and g)
increases significantly, which can be attributed to release of gas
generating by organic templates in the process of calcination.
Due to the loss of the CMCS templates, the volume of particle
(about 800 nm) decreases slightly. The disappearance of the CMCS
leads to the obviously improved particle dispersity.

Fig. 4 shows the TEM photograph of T/Z-5. The morphologies of
T/Z-5 can be clearly observed from Fig. 4a–c, which is in agreement
with the SEM results. As shown in Fig. 4d and e, two sets of lattice
fringe spacings of 0.337 nm and 0.202 nm are corresponding to the
d-spacing of (1 1 1) plane of ZrO2 and (1 0 1) plane of TiO2. Owing
to the introduction of TiO2 into ZrO2 during the stages of synthesis,
the lattice mismatch appears at the interface of ZrO2 and TiO2 and
further lead to a disoriented atomic arrangement [50]. According to
the results of XRD, XPS and SAED analyses, it can be concluded that
the composites are composed of TiO2 and ZrO2 with heterogeneous
structure. Element mapping of T/Z-5 (Fig. 4f– h) reveals that Ti, O
and Zr elements are uniformly distributed in entire composites.
With respect to all these structural analysis results, it is proved
that TiO2 effectively built into the ZrO2 host matrix.

The FT-IR spectra of the raw CS, CMCS and T/Z-CMCS in the
range 500–4000 cm�1 are shown in Fig. 5. The predominant peaks
pectra of Zr 3d (b) and Ti 2p (c), O 1s (d) in T/Z-5.



Fig. 3. SEM images of T/Z-CMCS-5 (a-c), T/Z-5 (d, f, g) and local enlarged image of (d) (inset (e)).
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at 3450, 1600 and 1200 cm�1 are assigned to the OAH bending
vibrations, NAH bending vibrations and CAOAC bending vibra-
tions, respectively [51]. The occurrence of peaks (in b) at
1490 cm�1 owing to the ACOOH bending vibrations demonstrates
that CS is modified by monochloro acetic acid successfully. The
peak at 780 cm�1 corresponds to the ZrAOAZr vibration, while
the inconspicuous peak at 1100 cm�1 confirms the presence of
TiAO stretching vibration [34]. The broad peak ranging from
3750 to 3250 cm�1 correspond to the surface hydroxyl groups
which are attributed to CMCS templates and the physically
adsorbed water molecules in the CMCS templates.

TG curve of T/Z-CMCS-5 is shown in Fig. 6. There is an initial
weight loss about 10 wt% below 200 �C, which is mainly attributed
to the release of water adsorbed by CMCS from air or existing in the
template molecules. The next weight loss of approximate 30 wt%
below 600 �C corresponds to the decomposition of CMCS tem-
plates. There is no significant loss in weight when the temperature
is over 600 �C. The TGA result demonstrates the weight ratio of
templates in samples is about 30% and the appropriate calcination
temperature is 600 �C.

Pore structure and specific surface area changes due to the pres-
ence of TiO2 were investigated by comparing N2 adsorption/des-
orption isotherms. The accumulated pore size distributions of P/Z
and T/Z-5 are illustrated in Fig. 7. It is obvious in Fig. 7a that the
physisorption isotherm of the P/Z is of type IV while T/Z-5 is of
type V, indicating a typical mesoporous structure with a relatively
wide pore size distribution [16]. Based on the isotherm pattern, T/
Z-5 shows a larger specific surface area of 72.8 m2 g�1 which is 4
times larger than that of P/Z sample (22.5 m2 g�1). Meanwhile,
the average pore size value of T/Z-5 (Fig. 7b) is observed approxi-
mate 11 nm while the value of P/Z is about 5 nm. The samples
(T/Z-5) prepared in the presence of templates shows a larger speci-
fic surface area, suggesting more active sites are provided in the
process of photocatalysis. Hence, the enhancements of specific sur-
face area and average pore size of the samples are considered as
one of the favorable conditions to enhance photocatalytic activity
for Rh B dye degradation.

The UV–vis absorption spectra of the T/Z, T/Z-100 and T/Z-0 are
shown in Fig. 8a and b. The results of (Ahm)2 based on indirect
allowed transition for the photon energy of the samples are shown
in Fig. 8c and d. The band gap of the all samples can be obtained
based on Tauc’ s Equation [37] and the results are shown in Table 3.
Fig. 8a and b show that the absorption edge of all samples is at
�360 nm. Compared with T/Z-0 particles, the absorption intensi-
ties of all T/Z samples are obviously larger in the UV-light region.
The results in Table 3 show the band gap energy of T/Z-100 and



Fig. 4. TEM images (a-c), HRTEM images (d, e) and Element mapping images (f–h) of T/Z-5.
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T/Z-0 is 3.26 and 5.21 eV, respectively. Compared with T/Z-0 parti-
cles, the band gap energies of all the TiO2/ZrO2 samples decrease
significantly and are between 3.96 and 3.78 eV. The decrease in
the band gap for all TiO2/ZrO2 samples compared to T/Z-0 can be
attributed to lower band gap of TiO2 [52]. The result facilitates
the separation of electrons and holes pair during light irradiation,
which eventually leads to the faster photocatalytic dye
degradation.
3.2. Photocatalytic activity

3.2.1. Effect of the TiO2 content
Fig. 9a shows the corresponding photocatalytic efficiency by

using TiO2/ZrO2 composites as catalyst towards Rh B dye degrada-
tion. The maximum absorption wavelength of Rh B is observed at
554 nm in Fig. 9b. The dye degradation efficiency can be calculated
according to Eq. (1):
Degradationefficiency ¼ A0 � At

A0
ð1Þ

where A0, At is the absorbance of Rh B solution at maximum absorp-
tion wavelength after treating in dark for 60 min and after reacting
for t min, respectively. The order of degradation efficiency of all
samples is as follows: T/Z-5 (degradation efficiency: 90.5%) > T/Z-4
(degradation efficiency: 85.5%) > T/Z-6 (degradation efficiency:
82.6%) > T/Z-8 (degradation efficiency: 75.7%) > T/Z-2 (degradation
efficiency: 73.9%) > T/Z-0 (degradation efficiency: 60.6%). Compared
with T/Z-0 particles, the dye degradation efficiency of all T/Z sam-
ples increases obviously, which illustrates that the compositing of
TiO2 into ZrO2 can reduce electron-hole pair recombination and
shows a better catalytic efficiency. As the content of TiO2 increases,
the degradation efficiency increases gradually until the mole ratio
of TiO2 to ZrO2 reaches 5%, and then the degradation efficiency
decreases. The recombination of TiO2 results in the lattice expan-
sion of ZrO2, but as the mole ratio of TiO2 to ZrO2 exceeds 5%, the



Fig. 5. FT-IR spectra of the raw CS (a), CMCS (b), T/Z-CMCS-8 (c), T/Z-CMCS-6 (d), T/Z-CMCS-5 (e), T/Z-CMCS-4 (f) and T/Z-CMCS-2 (g).

Fig. 6. TG curve of T/Z-CMCS-5 sample.
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structural defect of T/Z composites occurs owning to the lattice
expansion. Eventually, the degradation efficiency of samples
reduces [43]. Thus 5% of TiO2 is regarded as the optimum content
and T/Z-5 is used as suitable photocatalyst for further photocat-
alytic experiments.
Fig. 7. N2 sorption isotherms (a) and acc
3.2.2. Effect of the pH of Rh B solution
In the process of photocatalytic, the pH of solution is not a neg-

ligible factor influencing the performance of catalyst. Therefore,
the degradation efficiency of Rh B with various pH values in the
presence of T/Z-5 as photocatalyst under UV-light is measured
and the results are shown in Fig. 10. The zirconium oxides maybe
exist in varying degrees of protonation (2a) and deprotonation (2b)
[53]:

ZrOH + HþZrOH2
þ (acidic medium) ð2aÞ
ZrOH + OH—ZrOH—+H2O (alkaline medium) ð2bÞ
As the pH increases from 5.4 to 10.3, the photocatalytic effi-

ciency of Rh B degradation promotes. The enhancement of photo-
catalytic degradation is attributed to the ionic state of the Rh B
molecules in the aqueous solution. The attractive electrostatic
forces existing between the negatively charged ZrO2 surface and
the positively charged dye molecules groups strengthen gradually
with increasing the pH value, and can eventually facilitate more
efficient decomposition of dyes. As the pH value increases to higher
than 10.3, the photoexcitation happening on the catalyst surface
will be masked because of non-adsorption of the undissociated
umulated pore size distribution (b).



Fig. 8. UV–visible spectra of the T/Z (a), T/Z-100, T/Z-0 (b) and the plotting of (Ahm)2 vs. ht based on the indirect allowed transition (c) and (d).

Table 3
The band gap of samples.

Samples T/Z-0 T/Z-2 T/Z-4 T/Z-5 T/Z-6 T/Z-8 T/Z-100

Band gap (eV) 5.21 3.96 3.92 3.85 3.82 3.78 3.26

Fig. 9. Degradation efficiency of Rh B using TiO2/ZrO2 composites (a), the absorption spectra of Rh B with T/Z-5 as photocatalyst in different reaction time (b).
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dye molecules and its dispersion in the bulk solution, which leads
to less production of reactive free radicals (OH�) followed by low
photocatalytic efficiency [43]. Otherwise, the electrostatic forces
between positively charged ZrO2 in acidic solution and the posi-
tively charged dye molecules groups turn into exclusion rather
than attraction, so photocatalytic efficiency reduces.

3.2.3. Effect of different catalysts on Rh B
The degradation efficiencies of Rh B for different samples under

the UV-light were evaluated. The results are shown in Fig. 11. Com-
pared with the photocatalytic properties of P/Z particle, the
enhanced photocatalytic property of T/Z-0 is attributed to the
enlargement of specific surface area to provide more active sites
that can play a significant role for absorption of UV-light. Mean-
while, the result that T/Z-5 shows a better degradation efficiency
than T/Z-S-5 illustrates that CS after being modified (CMCS) shows
a better performance as templates. Furthermore, it can be seen that
the photocatalytic activity of T/Z-5 is approximately 30% higher
than that of T/Z-0 samples, illustrating that the compositing of
TiO2 into ZrO2 causes a slow electron-hole pair recombination rate



Fig. 10. Degradation efficiency of Rh B solution with various pH values and schematic diagram of Rh B hydrolysis.

26 J. Tian et al. / Journal of Colloid and Interface Science 541 (2019) 18–29
with fast electron transfer ability. Therefore, T/Z-5 prepared by
using CMCS as templates performs the best photocatalytic degra-
dation efficiency in comparison with other samples.

3.2.4. Reusability experiment
The stability of the photocatalyst is considered to play a pivotal

role in evaluating the performance of catalyst, the cyclic experi-
ments are conducted for six runs and the result is depicted in
Fig. 12a. After the first measurement, the catalyst is centrifuged,
then washed three times with deionized water and ethanol, and
dried for the next cyclic experiment. The catalyst is added into
the freshly prepared dye solution and the previous experiment
steps are repeated. The data of photocatalytic experiments in
Fig. 12a and SEM image of catalyst after six cycles in Fig. 12b reveal
that there is no appreciable loss in the activity and obvious change
in the morphology of catalyst, which demonstrates that the photo-
catalyst is photostable and can be reused efficiently. Meanwhile,
the photocatalytic activities of other reported ZrO2 particles are
compared and listed in Table 4. In the case of achieving the same
Fig. 11. Degradation efficiency of Rh B with various catalysts.
degradation efficiencies, some aspects of TiO2/ZrO2 composites
including the time to prepare samples, applicable pH range and
recyclable times show the obvious superiority.

3.3. Photocatalytic mechanism

The conduction band (CB) and valence band (VB) of samples can
be calculated according to Eqs. (3a) and (3b) [37]:

ECB ¼ X � Ec � 0:5Eg ð3aÞ

EVB ¼ X � Ec þ 0:5Eg ð3bÞ
where ECB, EVB is the CB and VB edge potential, respectively; X is the
electronegativity of the semiconductor, which is the geometric
mean of the electronegativity of the constituent atoms (The X value
of ZrO2 and TiO2 are 5.91 and 5.81 [58]; Ec is the energy of free elec-
trons on the hydrogen scale (4.5 eV); and Eg is the band gap energy
of the semiconductor (The Eg values of ZrO2 and TiO2 are calculated
to be 5.21 and 3.26 eV as shown in Fig. 7, respectively.). According
to the above relation, the ECB values of ZrO2 and TiO2 are calculated
to be �1.195 and �0.32 eV, while the EVB are 4.015 and 2.94 eV,
respectively.

Based on aforementioned experimental results, the mechanism
of the photocatalytic degradation is proposed. As shown in Fig. 13,
the photocatalytic mechanism mainly can be analyzed by three
stages and the detailed progress is described as follows: (I) The
light absorption of the material and the production of charge car-
riers (electrons and holes) (Eqs. (4a)). Under the sunlight radiation,
the transition of electrons from the VB of ZrO2 and TiO2 to CB
occurred and the same number of holes left in the corresponding
valence band position. (II) The transfer of electrons and holes. Com-
pared with ECB value of TiO2 (�0.32 eV), the ECB value of ZrO2

(�1.195 eV) is more negative, which results in the electrons move
from the CB of ZrO2 to the CB of TiO2. Meanwhile, the holes will
migrate from VB of TiO2 to VB of ZrO2. (III) The reaction between
charge carries and reactants (Eqs. (4b)–(4e)). The superoxide radi-
cal (�O2

�) is generated from the interactions between produced



Fig. 12. The cycles of photocatalytic experiment of T/Z-5 (a) and SEM image (b) of catalyst after using six cycles.

Table 4
Comparison of photocatalytic activity of several ZrO2 particles.

aSamples bMethods cMass (mg) d Catalytic efficiency epH fCycles Reference

Dye Time V � c (L �mg/L)

N-ZrO2

Amaranth
Thermal Decomposition
24 h

100
0.1 � 10

84.5%
after 4 h

5–9 6 [54]

ZrO2

2.4.6-Trichlorophenol
Hydrothermal
24 h

50
0.1 � 10

90.0%
after 4 h

/ / [55]

Pd-ZrO2-MWCNTs
Acid Blue 40

Co-precipitation
12 h

100
0.1 � 20

95.0%
after 4 h

/ / [56]

Fe3O4@ZrO2

Methyl Orange
Sol-gel
14 h

50
0.05 � 10

89.0%
after 4 h

/ 5 [57]

TiO2/ZrO2

Rh B
Microwave solvothermal
1.0 h

50
0.1 � 10

90.5%
after 4.5 h

7–11 6 This work

a Sample that shows the best photocatalytic property is selected as representative.
b The method to prepared the catalyst and the reaction time.
c The mass of samples, the volume and concentration of dye solution is added in photocatalytic experiment.
d The degradation efficiency of catalysts and the time required.
e The pH of dye solution in which the degradation efficiency of photocatalyst still reach over 75%.
f The cycles in which the degradation efficiency of sample has no change obviously.
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electrons and atmospheric oxygen, while hydroxyl radical (�OH) is
produced by the holes present in the valence band and water mole-
cules. The formation of radicals can not only avoid electron-hole
recombination efficiently but also breakdown the bonds existing
in the dye molecules and degrade it completely [59]. The mecha-
nism can be described approximately based on the following reac-
tions (4a)–(4e):

ZrO2/TiO2 + ht! ZrO2 (hþ) + TiO2 (e�) ð4aÞ
Fig. 13. Mechanism for the photocatalytic degradation of Rh B.
TiO2 (e�) + O2 ! �O2
— + TiO2 ð4bÞ

hþ + OH— ! 2�OH ð4cÞ

�O2
— + Dye ! Degradation ð4dÞ

�OH + Dye ! Degradation ð4eÞ
4. Conclusions

A simple, efficient and environmentally friendly microwave
solvothermal method was utilized to synthesize TiO2/ZrO2 com-
posites in an hour. Based on the characterization of samples, the
5% TiO2/ZrO2 composites with a uniform diameter 800 nm exhib-
ited a significantly enhanced specific surface area and reduced
band gap, which led to a better photocatalytic degradation. 90.5%
of Rh B was degraded under UV light irradiation in presence of
5% TiO2/ZrO2 composites as photocatalyst. Further, it was also
proved that TiO2/ ZrO2 composites showed a better photocatalytic
performance in alkaline solution (pH = 10.3) than other samples.
Finally, the results about cycles experiment indicated there is no
appreciable loss in degradation efficiency of samples over at least
six cycles. Therefore, TiO2/ZrO2 composites prepared by microwave
solvothermal method with less preparation time exhibit excellent
photocatalytic degradation performance for dye, and show poten-
tial industrial applications in the environmental remediation.
Meanwhile, these unique composites with unique dielectric
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properties can be used for other applications if combinedwith poly-
mer, metal, ceramic or carbon matrix [60–78] including sensors,
electromagnetic interference (EMI) shielding, adsorbents for other
pollutants or precious metal recovery from ocean, etc [79–89].

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jcis.2019.01.069.
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