One-step preparation of single-crystalline Fe$_2$O$_3$ particles/graphene composite hydrogels as high performance anode materials for supercapacitors

Huanwen Wanga, Zijie Xua, Huan Yia, Huige Weib, Zhanhu Guob,* , Xuefeng Wanga,*

aDepartment of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
bIntegrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA

Received 30 December 2013; received in revised form 10 March 2014; accepted 16 April 2014
Available online 5 May 2014

KEYWORDS
Graphene; Fe$_2$O$_3$; Hydrogel; Anode; Supercapacitor

Abstract
To increase the energy density of supercapacitors to approach that of batteries, the current research is always directed towards the cathode materials, whereas the anode materials are rarely studied. In the present work, single-crystalline Fe$_2$O$_3$ nanoparticles directly grown on graphene hydrogels are investigated as high performance anode materials for supercapacitors. During the formation of the graphene/Fe$_2$O$_3$ composite hydrogels, flexible graphene sheets decorated with Fe$_2$O$_3$ particles are self-assembled to form interconnected porous microstructures with high specific surface area, which strongly facilitate charge and ion transport in the full electrode. Infrared spectra show that hydrogen bond is formed between C–OH on graphene hydrogels and Fe$_2$O$_3$. Benefits from the combined graphene hydrogels and Fe$_2$O$_3$ particles in such a unique structure are that the graphene/Fe$_2$O$_3$ composite electrode exhibits an ultrahigh specific capacitance of 908 F g$^{-1}$ at 2 A g$^{-1}$ within the potential range from −1.05 to −0.3 V, and an outstanding rate capability (69% capacity retention at 50 A g$^{-1}$). Furthermore, the cycling performance is clearly much better for the graphene/Fe$_2$O$_3$ composite hydrogels than that for pure Fe$_2$O$_3$ sample. These findings open a new pathway to the design and fabrication of...
High performance anode materials for supercapacitors

Introduction
As a new class of energy storage devices, supercapacitors display the desirable characteristics of high power density (ten times more than batteries), fast rates of charge-discharge (with seconds), excellent cycling stability, and low maintenance cost, which make them one of the most promising candidates for next-generation power devices [1-3]. Unfortunately, the energy storage density of existing supercapacitors is limited, generally one order of magnitude lower than that of batteries [4]. Currently, for practical applications, it is essential to increase the energy density of supercapacitors, without sacrificing the device power density and cycle life. Experimental evidence suggests that electrode materials play a key role in the development of high performance supercapacitors. Among various supercapacitor electrode materials, pseudocapacitive transition-metal oxides and electronically conducting polymers based on faradic redox charge storage have exhibited much higher energy density than that of electrochemical double-layer capacitive carbon materials [5-7]. Different materials have been employed for fabrication of the anode (negative electrode associated with oxidative chemical reactions) and cathode (positive electrode associated reductive chemical reactions) [8]. According to the working potential window in aqueous electrolytes, these pseudocapacitive materials can be divided into two categories: (1) cathode materials (working potential above 0 V vs. SCE), and (2) anode materials (working potential below 0 V vs. SCE). So far, despite great progress having been made in improving the capacitance of cathode materials [8,9], there are only a few reports on anode materials due to the unsatisfactory capacitive performance.

It is noted that carbon-based materials are commonly used as anodes in the asymmetrical supercapacitors because of their high specific surface area, excellent electrical conductivity, and large power density [10,11]. However, the low specific capacitance of carbon materials severely limits the energy density for supercapacitors. Therefore, it is highly desirable to explore new anode materials. It has been reported that metal oxide based anodes such as MoO$_3$, V$_2$O$_5$, TiN, VN, Bi$_2$O$_3$, and FeO$_x$ show much higher energy density than carbon-based materials. Among these anode materials, iron oxides have attracted considerable attention because of their variable oxidation states, natural abundance, low cost, low toxicity and environmental friendliness [18-32]. Particularly, iron oxides possess high hydrogen evolution potential in aqueous solution, thus making them a promising candidate as anode in asymmetrical supercapacitors.

Table 1 summarizes some of the results that have been obtained to date with FeO$_x$ as a supercapacitor electrode material. Except in thin films, the poor electronic conductivity limits the performance of iron oxides in terms of both capacitance and capacitance retention at high current densities. In order to increase electrical conductivity and utilization efficiency, many works have shown supercapacitor application of iron oxides coupled with various carbonaceous materials such as carbon nanotubes, carbon nanofibers, carbon nanosheets, carbon black, carbon foam and graphene. As expected, these FeO$_x$-carbon composites exhibit enhanced capacitances in comparison with pure iron oxides. For instance, the specific capacitance value of up to 135 F g$^{-1}$ for Fe$_3$O$_4$ nanosheets-carbon nanofibers was higher than that of Fe$_3$O$_4$ (83 F g$^{-1}$) [25]. Wu et al. [28] reported the specific capacitance of 510 F g$^{-1}$ for Fe$_3$O$_4$, but only under very limiting circumstances: a low oxide weight loading (3 wt%), which resulted in only 40 F g$^{-1}$ normalized to the Fe$_3$O$_4$-carbon composite mass. Very recently, 2D sandwich-like Fe$_3$O$_4$-graphene nanocomposites showed excellent rate capability, but their specific capacitance was needed to further increase [32]. Therefore, boosting the performance of FeO$_x$ based energy storage by constructing well-defined pathways for efficient ionic and electronic transport remains a major topic of interest.

More recently, self-assembling two-dimensional (2D) graphene sheets into 3D hydrogels opens a new pathway for supercapacitor application [33]. Graphene hydrogels can provide strong mechanical strengths, multidimensional electron transport pathways, easy access to the electrolyte, and minimized transport distances between bulk electrode and electrolyte due to the combination of the 3D interconnected framework and the intriguing properties of graphene [33,34]. The supercapacitors based on graphene hydrogels exhibit ultrahigh rate capability (up to 100 A g$^{-1}$) and outstanding cycling performance. However, their specific capacitances (128-226 F g$^{-1}$) are fundamentally limited by the electrical double layer mechanism [35-41]. To enhance energy densities, recent works have shown supercapacitor application of graphene hydrogels combined with some pseudocapacitive cathode materials such as Co$_3$O$_4$ [42], Ni(OH)$_2$ [43] and MnCO$_3$ [44]. Besides, graphene/VO$_2$ composite hydrogels have been reported to exhibit a specific capacitance of 426 F g$^{-1}$ at 1 A g$^{-1}$ in the potential range of −0.6 to 0.6 V, which is indicative of a positive synergistic effect of VO$_2$ and graphene on the improvement of electrochemical performance [45]. Nevertheless, to the best of our knowledge, a study of iron oxide supported on 3D graphene hydrogels as anode materials for supercapacitors has not been reported to date.

In this paper, a one-step hydrothermal strategy was reported to prepare 3D graphene/Fe$_3$O$_4$ composite hydrogels, in which Fe$_3$O$_4$ are homogeneously grown on graphene sheets during the formation of graphene hydrogels. Such unique architectures can offer numerous channels for rapid diffusion of electrolyte ions within the electrode material and high electrical conductivity of the overall electrode due to the graphene network. When used as anode materials for supercapacitors, graphene/Fe$_3$O$_4$
composite hydrogels show ultrahigh specific capacitance, outstanding rate capability and enhanced cycling performance.

Experimental section

Synthesis of samples

GO was synthesized from graphite powders by a modified graphite oxide (GO), which was prepared from natural graphite flakes using a modified Hummers method \[16,46\]. In a typical synthesis process of graphene/Fe$_2$O$_3$ composite hydrogels, a 60 mL of GO (2 mg mL$^{-1}$) aqueous dispersion was mixed with FeCl$_3$·6H$_2$O (420 mg) by sonication for 4 h. Then the resulting mixture was sealed in a Teflon-lined autoclave and was hydrothermally treated at 180°C for 12 h. Finally, the as-prepared sample was freeze-dried overnight, followed by vacuum drying at 60°C for 12 h. For comparison, graphene hydrogel and Fe$_2$O$_3$ were synthesized by the same procedure in the absence of FeCl$_3$·6H$_2$O and GO, respectively. The content of Fe$_2$O$_3$ was determined by weighing the residue that was obtained after processing the Fe$_2$O$_3$/graphene hydrogel composite at 800°C in air atmosphere. The weight percent of Fe$_2$O$_3$ in the composite was 65%.

Materials characterization

The products were characterized by field emission scanning electron microscopy (FESEM; Philips XSEM30, Holland), and transmission electron microscope (TEM; JEOL, JEM-2010, Japan). The structure of the samples was examined by X-ray diffraction (XRD; Philips PC-APD) with Cu K$_\alpha$ radiation ($\lambda = 1.5418$ Å) operating at 40 kV, 60 mA. Raman spectra were collected using a 514 nm laser with RM100 under ambient conditions, with a laser spot size of about 1 mm. Nitrogen adsorption/desorption isotherms were measured at the liquid nitrogen temperature using a Micromeritics Tristar 3000 analyzer. FTIR spectra were recorded at 0.5 cm$^{-1}$

Table 1 Physical and electrochemical properties reported in recent papers for FeO$_x$-based electrodes in a negative potential range in various aqueous electrolytes.

<table>
<thead>
<tr>
<th>FeO$_x$ electrode</th>
<th>Surface area (m2 g$^{-1}$)</th>
<th>Electrolyte</th>
<th>Potential range (V vs. SCE)</th>
<th>Specific capacitance (F g$^{-1}$)</th>
<th>Rate capability</th>
<th>Ref (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_2$O$_3$ nanosheet film</td>
<td>Not reported</td>
<td>1 M Li$_2$SO$_4$</td>
<td>−0.9 to −0.1 V</td>
<td>173 at 3 A g$^{-1}$</td>
<td>117 at 12.3 A g$^{-1}$</td>
<td>[17]</td>
</tr>
<tr>
<td>Cellular Fe$_2$O$_3$ film</td>
<td>Not reported</td>
<td>1 M Na$_2$SO$_4$</td>
<td>−0.55 to 0.05 V</td>
<td>105 at 20 mV s$^{-1}$</td>
<td>Not reported</td>
<td>[18]</td>
</tr>
<tr>
<td>Fe$_2$O$_3$ powders</td>
<td>115</td>
<td>0.1 M K$_2$SO$_4$</td>
<td>−0.8 to 0.25 V</td>
<td>75 at 10 mV s$^{-1}$</td>
<td>Not reported</td>
<td>[19]</td>
</tr>
<tr>
<td>Fe$_2$O$_3$ film</td>
<td>Not reported</td>
<td>1 M NaOH</td>
<td>−0.6 to 0.1 V</td>
<td>178 at 5 mV s$^{-1}$</td>
<td>121 at 100 mV s$^{-1}$</td>
<td>[20]</td>
</tr>
<tr>
<td>Fe$_2$O$_3$ nanotube arrays</td>
<td>Not reported</td>
<td>1 M Li$_2$SO$_4$</td>
<td>−0.8 to 0 V</td>
<td>138 at 1.3 A g$^{-1}$</td>
<td>91 at 12.8 A g$^{-1}$</td>
<td>[21]</td>
</tr>
<tr>
<td>FeOOH rods</td>
<td>Not reported</td>
<td>1 M Li$_2$SO$_4$</td>
<td>−0.85 to −0.1 V</td>
<td>116 at 0.5 A g$^{-1}$</td>
<td>93 at 1.5 A g$^{-1}$</td>
<td>[22]</td>
</tr>
<tr>
<td>octadecahedron Fe$_2$O$_4$ film</td>
<td>Not reported</td>
<td>1 M Na$_2$SO$_4$</td>
<td>−1 to 0.1 V</td>
<td>118 at 2 A g$^{-1}$</td>
<td>50 at 3.3 A g$^{-1}$</td>
<td>[23]</td>
</tr>
<tr>
<td>Fe$_2$O$_4$ nanoparticles</td>
<td>Not reported</td>
<td>1 M Na$_2$SO$_4$</td>
<td>−0.9 to 0.1 V</td>
<td>207.7 at 0.4 A g$^{-1}$</td>
<td>90.4 at 10 A g$^{-1}$</td>
<td>[24]</td>
</tr>
<tr>
<td>Fe$_2$O$_4$/CNF composite</td>
<td>Not reported</td>
<td>1 M Na$_2$SO$_4$</td>
<td>−0.9 to 0.1 V</td>
<td>127 at 10 mV s$^{-1}$</td>
<td>53 at 10 mV s$^{-1}$</td>
<td>[25]</td>
</tr>
<tr>
<td>Fe$_2$O$_4$/CNT composite</td>
<td>Not reported</td>
<td>6 M KOH</td>
<td>−1 to 0 V</td>
<td>129 at 2.5 mA cm$^{-1}$</td>
<td>103 at 40 mA cm$^{-1}$</td>
<td>[26]</td>
</tr>
<tr>
<td>Fe$_2$O$_4$/carbon nanosheets</td>
<td>229</td>
<td>1 M Na$_2$SO$_4$</td>
<td>−0.8 to −0.2 V</td>
<td>163.4 at 1 A g$^{-1}$</td>
<td>113 at 10 A g$^{-1}$</td>
<td>[27]</td>
</tr>
<tr>
<td>Fe$_2$O$_4$/carbon black</td>
<td>34</td>
<td>1 M Na$_2$SO$_4$</td>
<td>−0.75 to 0.5 V</td>
<td>510 for Fe$_2$O$_4$ at 15 mA g$^{-1}$</td>
<td>Not reported</td>
<td>[28]</td>
</tr>
<tr>
<td>Fe$_2$O$_3$ nanotube/rGO</td>
<td>Not reported</td>
<td>1 M Na$_2$SO$_4$</td>
<td>−1 to 0 V</td>
<td>215 at 2.5 mV s$^{-1}$</td>
<td>88 at 100 mV s$^{-1}$</td>
<td>[29]</td>
</tr>
<tr>
<td>Fe$_2$O$_4$ carbon nanofoams</td>
<td>431</td>
<td>2.5 M Li$_2$SO$_4$</td>
<td>−0.8 to 0.2 V</td>
<td>343 for FeO$_x$ at 5 mV s$^{-1}$</td>
<td>Not reported</td>
<td>[30]</td>
</tr>
<tr>
<td>Fe$_2$O$_4$ particles-graphene</td>
<td>Not reported</td>
<td>1 M KOH</td>
<td>−1 to 0.1 V</td>
<td>220.1 at 0.5 A g$^{-1}$</td>
<td>134.6 at 5 A g$^{-1}$</td>
<td>[31]</td>
</tr>
<tr>
<td>FeOOH nanorods/graphene</td>
<td>160</td>
<td>1 M LiOH</td>
<td>−1.15 to 0.1 V</td>
<td>326 at 0.5 A g$^{-1}$</td>
<td>293 at 10 A g$^{-1}$</td>
<td>[32]</td>
</tr>
</tbody>
</table>
resolution on a Bruker Vertex 70 V with 0.1 cm\(^{-1}\) accuracy using a three-reflection attenuated total reflection (ATR) accessory with a ZnSe internal reflection element (Harrick Scientific Products, Ser No: GATVBR48406071201).

Electrochemical measurement

The working electrodes were prepared by pressing mixtures of the as-prepared powder samples, acetylene black and polytetrafluoroethylene (PTFE) binder (weight ratio of 75:20:5) onto a nickel foam (1 \(\times\) 1 cm\(^2\)) current collector. The mass of electroactive materials in the working electrode was obtained through weighing bare nickel foam and nickel foam on which the above mixtures were pressed. Each working electrode contained about 1 mg electroactive material and had a geometric surface area of about 1 cm\(^2\). A typical three-electrode experimental cell equipped with a working electrode, a platinum foil counter electrode, and an Hg/HgO reference electrode was used for measuring the electrochemical properties of working electrode. All electrochemical measurements were carried out in 1 M KOH aqueous solution as electrolyte on a CHI660D electrochemical working station.

Results and discussion

Our designed protocol of graphene/Fe\(_2\)O\(_3\) composite hydrogels has been shown in Figure 1. Graphene oxide is selected as the substrate for \textit{in situ} growth of Fe\(_2\)O\(_3\) particles. Before hydrothermal reduction, the GO sheets are randomly dispersed in water due to their strong hydrophilicity. Subsequently, Fe\(^{3+}\) cations from FeCl\(_3\) can favorably bind with oxygen-containing groups on GO sheets via electrostatic interactions. At the beginning of hydrothermal reaction, the hydrolysis of Fe\(^{3+}\) leads to the formation of FeOOH deposited on the surface of the GO sheets. In the subsequent process, GO becomes regionally hydrophobic because of the diminished oxygenated functionalities and FeOOH is simultaneously decomposed into Fe\(_2\)O\(_3\). The uniform decoration of Fe\(_2\)O\(_3\) particles on graphene sheets lead to the formation of graphene/Fe\(_2\)O\(_3\) hydrogels [33].

The crystal phase and structure information of the products were obtained by XRD measurements. Figure 2 shows the XRD patterns of GO, graphene hydrogels, Fe\(_2\)O\(_3\) and graphene/Fe\(_2\)O\(_3\) composite hydrogels. The GO pattern is dominated by a single broad peak at 10.3°, which corresponds to an interlayer distance of 8.6 Å (Figure 2a). The expansion of the galleries relative to the graphite (002=3.4 Å) is caused by oxidation of the graphene sheets and intercalation of water and oxygen functionalities. The pattern of graphene hydrogels contains a very broad reflection at 23.2° (corresponding to d spacing of 3.7 nm), indicating the formation of a poorly ordered graphite-like material (Figure 2b). Figure 2c and d shows the XRD patterns of Fe\(_2\)O\(_3\) and graphene/Fe\(_2\)O\(_3\) composite hydrogels, in which all the peaks can be assigned to Fe\(_2\)O\(_3\) (JCPDS no. 33-0664). Moreover, no conventional stacking peak (002) of graphene sheets at 2θ=23.2° is detected, suggesting that the residual graphene sheets may be individual monolayers that are homogeneously dispersed in the resultant 3D framework.

Raman spectroscopy can be used to gain information about the structure of the samples. The Raman spectra of GO, graphene hydrogels, Fe\(_2\)O\(_3\) and graphene/Fe\(_2\)O\(_3\) composite hydrogels are shown in Figure 3. From the relative intensities of the D and G band peaks at 1350 and 1581 cm\(^{-1}\) (Figure 3a, b), it can be concluded that the conjugated G network (sp\(^2\) carbon) will be re-established during hydrothermal reduction of GO. As can be seen in Figure 3c, the fundamental Raman scattering peaks for Fe\(_2\)O\(_3\) are observed at 218, 277, 389, 486, and 595 cm\(^{-1}\) corresponding to the \(A_{g1}(1)\), \(E_{g2}+E_{g3}\), \(E_{g4}\), \(A_{1g}(2)\), \(E_{g5}\) modes [29], respectively.

![Graphite oxide (GO)](image1)

Graphite oxide (GO)

![Fe\(_2\)O\(_3\)](image2)

Fe\(_2\)O\(_3\)

![Hydrothermal process](image3)

Hydrothermal process

Figure 1 The formation process of 3D graphene/Fe\(_2\)O\(_3\) composite hydrogels.

![XRD patterns](image4)

Figure 2 XRD patterns of (a) GO, (b) graphene hydrogels, (c) Fe\(_2\)O\(_3\) and (d) graphene/Fe\(_2\)O\(_3\) composite hydrogels.
For the graphene/Fe2O3 composite hydrogels (Figure 3d), in addition to the bands corresponding to Fe2O3, the characteristic D and G bands of graphene also appear clearly, respectively. These results further suggest the good integration of graphene and Fe2O3 nanoparticles.

To reveal the interaction between Fe2O3 nanoparticles and graphene in the composite hydrogel, ATR-FTIR measurements are carried out. Figure 4 shows ATR-FTIR spectra of graphene hydrogels and graphene/Fe2O3 composite hydrogels. For the graphene hydrogels (Figure 4a), the bands appearing at 1208 and 1572 cm⁻¹ are attributed to the C–O(H) stretching peak and the skeletal vibration of the graphene sheets, respectively [4]. For the composite hydrogels, the characteristic absorption peak of graphene at about 1572 cm⁻¹ is clearly observed in Figure 4b, which is consistent with pure graphene hydrogels. However, the C–O(H) stretching peak (1229 cm⁻¹) for graphene/Fe2O3 composite hydrogels shows an obvious blue-shift in comparison with graphene hydrogels (1208 cm⁻¹). This phenomenon implies the existence of intramolecular hydrogen bonding. When the hydrogen (H) in C–OH is bound to the highly electronegative oxygen (O) in Fe2O3, the interaction between carbon (C) in graphene and oxygen (O) in OH group will become stronger, resulting in blue-shift of C–O (H) stretching vibration. This formation of the hydrogen bonding between C–OH in graphene and Fe2O3 is beneficial to mitigating polarization of the electrode or enhancing utilization of the active materials [6].

The nitrogen adsorption and desorption isotherms of the as-prepared graphene hydrogels and graphene/Fe2O3 composite hydrogels exhibit type IV characteristics (Figure 5a and b), which are indicative of the presence of relatively...
large pores in the samples. For pure Fe$_2$O$_3$ sample (Figure 5c), a small step of N$_2$ adsorption and desorption branches occurs at the relative high pressure (P/P_0), indicating that the pores mainly come from the voids among the nanoparticles. It is worth noting that the Brunauer-Emmett-Teller (BET) specific surface area of graphene/Fe$_2$O$_3$ composite hydrogels (173 m2 g$^{-1}$) is much higher than that of graphene hydrogels (134 m2 g$^{-1}$) and of pure Fe$_2$O$_3$ powder (24 m2 g$^{-1}$). This result strongly suggests that the Fe$_2$O$_3$ particles anchored on the separated graphene surface prevent the graphene sheets from aggregating and restacking [47], as illustrated in Figure 1. The large specific surface areas will undoubtedly shorten the ion diffusion paths and enhance the utilization of active materials, which can contribute to an improved pseudocapacitive performance. The pore size distribution of the sample calculated by desorption isotherm using Barret-Joyner-Halenda (BJH) method is shown in inset of Figure 5. The as-prepared graphene hydrogels and graphene/Fe$_2$O$_3$ composite hydrogels have similar pore-size distributions, from micropores to macropores. Importantly, an apparent increment in pore volume is observed from 0.327 cm3 g$^{-1}$ for graphene hydrogels to 0.387 cm3 g$^{-1}$ for graphene/Fe$_2$O$_3$ composite hydrogels, further indicating the separation of graphene sheets induced by the loading of Fe$_2$O$_3$ particles. For comparison, pore volume of pure Fe$_2$O$_3$ nanoparticles is

Figure 6 FESEM images of (a, b) graphene hydrogels, (c, d) graphene/Fe$_2$O$_3$ composite hydrogels and (e, f) Fe$_2$O$_3$. The inset shows the photograph of graphene/Fe$_2$O$_3$ composite hydrogels.
only 0.098 cm3 g$^{-1}$, which confirms the dispersion interaction of graphene hydrogels with Fe$_2$O$_3$ particles.

The surface morphologies of the as-synthesized samples are imaged by FESEM. Graphene hydrogels have a macro-porous morphology with the framework network (Figure 6a). The ultrathin and flexible nature of graphene sheets can be clearly observed in high magnification FESEM image (Figure 6b). Low magnification FESEM image of graphene/Fe$_2$O$_3$ composite hydrogels clearly shows that the Fe$_2$O$_3$ particles are anchored uniformly on both sides of the graphene sheets (Figure 6c). From high magnification FESEM image (Figure 6d), we can find that some Fe$_2$O$_3$ particles with a size of 50-200 nm have been encapsulated within the graphene sheets, which can efficiently prevent the aggregation of Fe$_2$O$_3$ particles. This result also reveals graphene hydrogel as an interconnected 3D network structure with dispersed pores of several micrometers in diameter, suggesting efficient assembly between the particles and graphene sheets during the hydrothermal treatment. Such composite framework could enhance the interface contact and suppress the dissolution and agglomeration of particles, thereby promoting the electrochemical activity and stability of the graphene/Fe$_2$O$_3$ composite. For comparison, pure Fe$_2$O$_3$ sample is synthesized by the same procedure in the absence of GO. As shown in Figure 6e and f, the as-prepared Fe$_2$O$_3$ nanoparticles exhibit uniform cube-shaped structures with the edge length of 50-100 nm. This morphology difference reveals that the strong interaction between GO sheets and Fe$^{3+}$ have an important effect on the crystal growth of Fe$_2$O$_3$ nanocrystals.

To characterize further the microstructure of the graphene/Fe$_2$O$_3$ composite hydrogels, TEM studies are carried

![Figure 7](image-url)
Figure 7 TEM images of (a, b) graphene hydrogels, (c, d) graphene/Fe$_2$O$_3$ composite hydrogels and (e, f) Fe$_2$O$_3$. The insets show the corresponding SAED pattern.
out (Figure 7). For comparison, we also present the TEM images of graphene hydrogels and the Fe$_2$O$_3$ sample. Figure 7a shows that graphene layers from hydrogels are almost transparent with some wrinkles visible under TEM. High-resolution TEM (HRTEM) and selected-area electron diffraction (SAED) patterns (Figure 7b) further support the production of individual high-quality crystalline graphene sheets. For the composite hydrogel material (Figure 7c), a sheet-like shape of graphene is uniformly deposited with numerous nanoparticles. The HRTEM image of graphene/Fe$_2$O$_3$ composite hydrogels reveals typical regular lattice fringes with the d spacing of 0.37 nm, corresponding to the (012) plane of Fe$_2$O$_3$ (Figure 7d). More interestingly, the SAED pattern (inset of Figure 7d) demonstrates the single crystalline structure of the Fe$_2$O$_3$. The reflection spots in SAED of Figure 7d recorded from the particles in Figure 7c can be indexed to the Fe$_2$O$_3$ crystal structure (JCPDS no. 33-0664). For pure Fe$_2$O$_3$, uniform cube shape is clearly observed in Figure 7e. From the HRTEM image (Figure 7f), the lattice fringes with a spacing of 0.58 nm is in good agreement with the spacing of the (110) plane of Fe$_2$O$_3$. Single crystalline structure is also confirmed by the (SAED) pattern (inset of Figure 7f). The different crystal orientation of HRTEM images would decide the morphology difference of Fe$_2$O$_3$, as observed in Figure 6d and f.

To evaluate the properties of the prepared samples as supercapacitor electrodes, we perform cyclic voltammetry (CV) and galvanostatic charge–discharge measurements. Figure 8a shows the typical CV curves of graphene hydrogels, Fe$_2$O$_3$ and graphene/Fe$_2$O$_3$ composite hydrogels within the potential range from -1.2 to 0.3 V at a scan rate of 10 mV s$^{-1}$. When the potential is below the -1 V, hydrogen evolution phenomenon becomes obvious for the graphene hydrogels (inset of Figure 8a). In the potential range from -1 to 0.3 V (Figure 8b), the CV curves of graphene hydrogels exhibit typical rectangular shape at different sweep rates, indicative of good charge propagation at the electrode surface following the electric double layer charging mechanism. As shown in Figure 8a, the CV curve of graphene/Fe$_2$O$_3$ composite hydrogels has one pair of redox peaks, corresponding to conversion between Fe$^{2+}$ and Fe$^{3+}$ \[32,48\]. When scanned to the more negative potential direction, Fe$^{3+}$ is reduced to Fe$^{2+}$ before appreciable hydrogen evolution (Figure 8a). Meanwhile, Fe$^{2+}$ is oxidized to Fe$^{3+}$ when scanned to the positive direction, consistent with the single oxidation peak observed in CV. The CV curves of graphene/Fe$_2$O$_3$ composite hydrogels retain a similar shape even at high scan rate, indicating an excellent capacitance behavior and fast diffusion of the electrolyte ions into the composite electrode (Figure 8d). From Figure 8a, the CV curve of the Fe$_2$O$_3$ sample is similar to that of graphene/Fe$_2$O$_3$ composite hydrogels. However, the area under the CV curves is clearly much larger for the graphene/Fe$_2$O$_3$ composite hydrogels than for the

![Figure 8](image-url) CV curves of (a) the samples at 5 mV s$^{-1}$, (b) graphene hydrogels, (c) Fe$_2$O$_3$ and (d) graphene/Fe$_2$O$_3$ composite hydrogels at different sweep rates. The insets show the CV curve of graphene hydrogels at 10 mV s$^{-1}$.

High performance anode materials for supercapacitors 93
Fe$_2$O$_3$ at the same scan rate (Figure 8c, d). It is well-known that the specific capacitance is proportional to the area of the CV curve (Figure 8c, d) \[6,49\]. This indicates that the graphene/Fe$_2$O$_3$ composite hydrogels have clearly higher capacitances than that of the Fe$_2$O$_3$.

Galvanostatic charge–discharge is a reliable method for measuring the specific capacitance of supercapacitors at constant currents. Figure 9a, b and c shows galvanostatic charge–discharge curves of graphene hydrogels, Fe$_2$O$_3$ and graphene/Fe$_2$O$_3$ composite hydrogels at different current densities. The specific potential window of -1.05 and -0.3 V is adopted to avoid the hydrogen-evolution reaction. The increase in the discharging time represents a higher capacitance of the graphene/Fe$_2$O$_3$ composite hydrogels. The specific capacitance is calculated by $I \Delta t / m \Delta V$, where I is the constant discharge current, Δt is the discharging time, m is the mass of active material in a single electrode, and ΔV is the voltage drop upon discharging. According to the discharging curves, the relationship between specific capacitance and current density is illustrated in Figure 9d. Graphene hydrogels exhibit a capacitance of 272 F g$^{-1}$ at 2 A g$^{-1}$ with the capacitance retention of 55% at 50 A g$^{-1}$, which is mainly ascribed to the electric double-layer capacitance. For the graphene/Fe$_2$O$_3$ electrode, the combination of electric double-layer capacitance and faradaic capacitance is responsible for the longer discharge duration due to faradaic charge-transfer accompanied by the double-layer charging process. The capacitance value of graphene/Fe$_2$O$_3$ composite hydrogels is as high as 908 F g$^{-1}$ at 2 A g$^{-1}$. Even at the high current density of 50 A g$^{-1}$, the specific capacitance value of the composite is still up to 622 F g$^{-1}$. To the best of our knowledge, such high specific capacitance and excellent rate capability are superior to the best results reported for FeO$_x$-based supercapacitor electrodes in the literature (Table 1). In contrast, Fe$_2$O$_3$ delivers a much lower capacitance value of 91 F g$^{-1}$ at 20 A g$^{-1}$, with only 10% retention in comparison with 2 A g$^{-1}$. The clearly improved capacitive performance may be attributed to the rational combination of graphene and Fe$_2$O$_3$ into the integrated hydrogel architecture. Due to the high specific capacitance, wide working potential range and high capacitance retention at high current density, the graphene/Fe$_2$O$_3$ composite hydrogels are potential to provide very high energy and power density by coupling with a suitable cathode material with a high oxygen evolution potential (such as MnO$_2$ \[50\], Ni(OH)$_2$ \[51\], NiCo$_2$O$_4$ \[1\], etc).

Because a long cycling performance is among the most important criteria for supercapacitors, an endurance test is conducted at 20 mV s$^{-1}$ (Figure 10). The first five CV curves of Fe$_2$O$_3$ and graphene/Fe$_2$O$_3$ composite hydrogels are shown in the inset of Figure 10a and b, respectively. It can be seen that the area reduction of the CV curves with the cycling number is much faster for the Fe$_2$O$_3$ sample than...
clearly enhanced. For graphene/Fe2O3 composite hydrogels the integration of Fe2O3 particles in the 3D graphene microstructure. This result strongly indicates that commercial FeCl3 hydrogels through a scalable one-step method by using Fe2O3 nanoparticles are anchored uniformly on the flexible graphene sheets, forming a porous network framework with hydrogen bond between C-OH on graphene hydrogels and Fe2O3. Because of fast ionic and electronic transport, graphene/Fe2O3 composite hydrogels provide tremendous potential for energy storage applications. When used as anode materials of supercapacitors, these graphene/Fe2O3 composite hydrogels exhibit ultrahigh specific capacitance, remarkable rate capability and enhanced cycling ability. The excellent electrochemical performance of graphene/Fe2O3 composite hydrogels originates from the synergistic effect of graphene hydrogels and Fe2O3 particles, and the hierarchical microstructure of the hybrid hydrogels. Furthermore, the electrode structure and fabrication method described in this study is simple and should thus be readily applicable to other applications such as electrode materials for Li/Na-ion batteries, electrocatalysts for oxygen evolution, electro-synthesis and so on.

Conclusions

We have successfully prepared graphene/Fe2O3 composite hydrogels through a scalable one-step method by using commercial FeCl3 · 6H2O and graphene oxide as precursors. In the hybrid architecture, Fe2O3 nanoparticles are anchored uniformly on the flexible graphene sheets, forming a porous network framework with hydrogen bond between C-OH on graphene hydrogels and Fe2O3. Because of fast ionic and electronic transport, graphene/Fe2O3 composite hydrogels provide tremendous potential for high performance anode materials for supercapacitors.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21173158 and 21373152).

References

Huanwen Wang received a B.S. degree from the Northwest Normal University in 2008. Now he is a Ph.D. candidate under the supervision of Prof. Xuefeng Wang from Tongji University. His research interest is focused on materials synthesis for energy storage and conversion.

Dr. Zijie Xu is currently an Associate Professor of Chemical Engineering at the Department of Chemistry of Tongji University. Before joining Tongji University in 2009, he was a senior scientist at the Department of Chemistry of Virginia. He received a B.S. degree from the Northwest Normal University in 1983 and Ph.D. from Fudan University in 1996. Dr. Wang’s research interests include metal reaction with hydrogen, designing particles in composites and related advanced materials, and their potential applications in energy storage.

Huige Wei, currently a Ph.D. candidate in Materials Science and Engineering at the University of California Los Angeles. Dr. Guo, chair of the Composite Division of American Institute of Chemical Engineers (AIChE, 2010-2011), directs the Integrated Composites Laboratory (ICL) with more than 20 members. Currently, Dr. Guo’s research team focuses on fundamental science of multifunctional nanocomposites for energy, electronic devices, environmental remediation, electromagnetic radiation shielding/absorption, anti-corrosion, fire-retardancy, and sustainability applications.

Dr. Zhanhu Guo is currently an Associate Professor of Chemical Engineering at the Department of Chemistry of Tongji University. Before joining Tongji University in 2009, he was a senior scientist at the Department of Chemistry of Virginia. He received a B.S. degree from the Northwest Normal University in 1983 and Ph.D. from Fudan University in 1996. Dr. Wang’s research interests include metal reaction with hydrogen, designing particles in composites and related advanced materials, and their potential applications in energy storage.