A novel “gel–sol” strategy to synthesize TiO$_2$ nanorod combining reduced graphene oxide composites

Lu Shaoa, Shuai Quana, Yang Liua, Zhanhu Guob, Zhenxing Wanga

aState Key Laboratory of Urban Water Resource and Environment (SKLURWE), School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
bIntegrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA

1. Introduction

Carbonaceous materials have been widely utilized for modifying semiconductors for effectively transporting electrons [1,2]. As the emerging carbon-based derivatives, graphene has superior mechanical flexibility, large surface area and excellent electrical conductivity [3,4]. Theoretically, graphene with tunable redox properties has great potential for enhancing the performance of semiconductors. On the other hand, TiO$_2$ suffering from the low efficiency and narrow light response range is the typical semiconductors. In this study, a novel so-called “gel–sol” process is firstly reported for synthesis of TiO$_2$ nanorod (TN) combining reduced graphene oxide (RGO) composites. By utilizing the triethanolamine (TEOA) as shape controller and under specific conditions (such as pH = 12), the hybrid composites can be readily obtained. The higher pH value benefits the deprotonation of TEOA for adsorption to the stationary nuclei. Therefore, the synthesized hybrid composites have the morphology of crystalline anatase TiO$_2$ nanorods anchored into the surface of reduced graphene oxide. The hybrid composites fabricated by the novel process have distinct advantages over the traditional methods for obtaining TiO$_2$ and graphene-based composites in terms of the well-confined TiO$_2$ morphology and the formation of Ti–C bonds between TN and RGO simultaneously. Therefore, the new strategy is urgently required for developing advanced TiO$_2$/graphene hybrid materials.

For the first time, TiO$_2$ nanorod/reduced graphene oxide (TNGRO) hybrid materials are synthesized by a novel “gel–sol” process which is contrast with the traditional sol–gel approach [18]. With the aid of shape controllers of triethanolamine (TEOA) during the gel–sol process [19], the well-defined TiO$_2$ nanorod (TN) with the large aspect ratio can be obtained and TNGRO can be formed by incorporation of graphene oxide. The basic process is investigated and the synthesized TNGRO is characterized.

2. Experimental

Graphene oxide (GO) was prepared by the modified Hummers method [20]. In a typical gel–sol process for synthesizing TNGRO, a variable amount of GO was dispersed in 40 mL distilled water under sonication. Then, 40 mL aqueous stock solution by mixing triethanolamine (TEOA) with titanium (IV) isopropanoxide (TIPO) at a molar ratio of [TEOA]/[TIPO] = 2:1, was added. After adjusting pH value to 12 by adding NaOH solution under vigorous stirring, the mixed solution was transferred into a 100 mL Teflon lined stainless steel autoclave, and aged at 110 °C for 24 h, 150 °C for 72 h and 190 °C for 24 h, respectively. The products were collected by centrifugation, washed with water and ethanol, and then treated in nitrogen at 400 °C for 2 h. The obtained TNGRO is ready for characterizations. Pure TiO$_2$ nanorods were prepared with the similar procedure. Wide-angle X-ray diffraction (WAXD) spectra
were recorded using a RINT D/MAX-2500/PC XRD instrument. X-ray photoelectron spectroscopy (XPS) was carried out by an AXIS ULTRA DLD spectrometer (SHIMADZU, Japan). Transmission electron microscopy (TEM) was performed on a FEI, Tecnai G2 F30 (USA) electron microscope.

3. Results and discussion

Fig. 1 has illustrated the gel–sol process for TNRGO synthesis. By controlling the hydrolysis of precursor, the condensed and viscous gel can be formed at 110 °C which acts as both the matrix for particle growing with inhibited coagulation and the reservoir of metal and hydroxide ions for controlled release. During the following sol formation at 150 °C, TEOA containing amino groups can limit the growing rate of the planes parallel to the c-axis of TiO$_2$ tetragonal crystal system as the shape controller according to the specific affinity to produce the rod-like TiO$_2$ architecture [19]. When GO is incorporated into the system, the further high

![Fig. 1. Evolution for TNGRO formation during the gel–sol process.](image)

![Fig. 2. TEM morphologies of (a) TiO$_2$ nanorods and (b) TNRGO.](image)

![Fig. 3. XRD pattern of TiO$_2$ nanorods and TNRGO.](image)
temperature treatment at 190 °C and 400 °C can facilitate bonding formation among GO and TiO$_2$, reduce the GO and tune the crystalline structure of TiO$_2$.

The morphologies by TEM observation have been demonstrated in Fig. 2. According to Fig. 2(a), TiO$_2$ nanorods have been successfully prepared by the gel–sol method at pH=12, and the shape and size of the nanorods are well uniform. TiO$_2$ nanorods exhibit average dimensions of 150 nm (length) × 30 nm (diameter) (L/D ratio=5). The large aspect ratio of TiO$_2$ nanorods synthesized by this procedure is the distinct advantage. In fact, several pH values have been investigated and the best nanorod morphology can be obtained at pH value of 12. The higher pH value benefits the deprotonation of TEOA for adsorption to the stationary nuclei. Therefore, the well-confined structure of TiO$_2$ is generated. Fig. 2(b) illustrates that TiO$_2$ nanorods anchored into the surface of graphene oxide which proves that TN-GRO hybrid materials have been obtained, which can be further confirmed by XPS.

XRD is utilized to explore the crystalline structures. According to Fig. 3, GO shows the peak at 10.9° is corresponding to the interlayer spacing of 8.11 Å [21] which indicates that GO have been exfoliated successfully. The XRD patterns of TiO$_2$ nanorods and TNRGO are similar while the intensity of TN-GRO is lower than that of TiO$_2$ nanorods. Both of them have the peaks at 25.3° (101), 37.9° (004), 48.1° (200), 54.0° (105, 211), 62.7° (204), 69.1° (116, 220) and 75.0° (215) which illustrates the anatase phase of TiO$_2$. Interestingly, there is no GO peak in TNRGO. This phenomena may illustrate that GO have at least partially reduced into graphene under the gel–sol process. The disappearance of diffraction peak (2θ=24.5°) belonging to graphene is possibly due to overlapped with (101) TiO$_2$ peak and low content of graphene in hybrid materials [22]. Therefore, the gel–sol approach in this study can produce TiO$_2$ nanorods with the anatase phase and partially reduce GO simultaneously.

Furthermore, XPS results of TNRGO are shown in Fig. 4. According to Fig. 4(a), the deconvolution of Ti2p peak of TNRGO can obtain four fitting curves at 464.5 eV, 458.9 eV, 460.2 eV and 465.8 eV. The curves at 464.5 eV and 458.9 eV are assigned to the Ti2p 1/2 and Ti2p 3/2. The curves at 460.2 eV and 465.8 eV are assigned to the Ti–C bond [23]. This proves that the chemical bonds among RGO and TiO$_2$ nanorods have been formed during the process in this study. Formation of Ti–C bonds can also be found by the deconvolution of C1s peak. Fig. 4(b) shows the deconvolution of C1s peak which has four fitting curves centered at 283.8 eV, 284.8 eV, 286.2 eV and 288.8 eV. The curve at 283.8 eV is corresponding to Ti–C bond [23], and the curves at 284.8 eV, 286.2 eV and 288.8 eV are assigned to the C–C/C=–C, C–O, and O–C=–O bonds respectively [24]. TNRGO hybrid materials fabricated by the novel process have distinct advantages over the traditional methods for obtaining TiO$_2$ and graphene-based mixtures in terms of the well-confined TiO$_2$ morphology and the formation of chemical bonds among TN and RGO.

4. Conclusions

TNRGO hybrid materials have been successfully synthesized by the novel gel–sol method. XRD proves that the anatase phase of TiO$_2$ nanorods in TNRGO has been formed and GO have been reduced during this process. TEM discloses the well-defined nanorod morphology of TiO$_2$ with the large aspect ratio which can be perfectly anchored into the surface of RGO. XPS results have testified that the bonds of Ti–C are formed in TNRGO which definitely benefits potential applications of the hybrid materials in various fields.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21177032), the Fundamental Research Funds for the Central Universities (Grant no. HIT.BRETIV.201307), State Key Laboratory of Urban Water Resource and Environment (No. 2011TS05) and Program for New Century Excellent Talents in University (NCET-11-0805).

References
